
On structure preserving numerical schemes for hyperbolic

partial differential equations and multiscale kinetic

equations

A Thesis
Submitted For the Degree of

Doctor of Philosophy

In

Faculty of Engineering

by

Megala Anandan

Department of Aerospace Engineering

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2024



To the determination of my parents,

Manimegalai and Anandan...



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. S. V. Raghurama Rao,

for his unwavering support and guidance throughout this journey. His mentorship has been

instrumental in shaping both my research endeavors and personal growth, providing me with

the freedom to explore and fostering my development as a researcher. His encouragement and

support for research collaborations have been invaluable in enhancing my academic experience.

I am grateful to research collaborators, Dr. Nicolas Crouseilles from Inria Rennes, Dr. Ben-

jamin Boutin from the Univeristy of Rennes, France and Prof. Dr. Mária Lukácová-Medvidová
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Abstract

Natural phenomena are frequently represented through the formulation of differential equa-

tions, coupled with specific initial and boundary conditions. Many such models possess inherent

structures that are crucial in describing the behaviour of solutions. Unfortunately, numerical

discretisations of such models often fail to preserve these structures, leading to inappropriate

numerical solutions. The numerical schemes that take special care to preserve the inherent

structures of a given differential equation in its discretisation process are known as structure

preserving schemes. Various structures have been extensively discussed in the existing liter-

ature. This thesis focuses on crucial structure preserving strategies such as entropy stability,

asymptotic preservation and well-balancing.

Many hyperbolic systems of partial differential equations (PDEs) have entropy inequalities as-

sociated with them. Numerical schemes that are designed to inherently satisfy the entropy

inequality are known as entropy stable schemes. On the other hand, the hyperbolic system of

PDEs can be derived as an approximation of a vector-kinetic model, which also encompasses

associated entropy structures. The entropy inequality of the hyperbolic system of PDE can

be derived as a moment of the entropy structures of vector-kinetic model. However, this cor-

respondence is not maintained in numerical discretisations. Presented as the first part of this

thesis is the development and analysis of a numerical scheme that achieves entropy stability

for the vector-kinetic model, along with the proof that it also recovers entropy stability for the

given hyperbolic system of PDEs.

Hyperbolic and kinetic equations containing small spatial and temporal scales due to stiff source

terms or strong forcing, pose significant challenges for numerical approximation. Asymptotic

preserving (AP) schemes offer an effective solution for handling these asymptotic regimes, al-

lowing for efficient computations without the need for excessively small mesh sizes and time

steps. Unlike traditional domain decomposition methods that involve coupling different models

(in different regimes) through interface conditions, AP schemes seamlessly transition between

different scales by ensuring automatic adaptation of solvers based on the resolution of scales.

Presented as the second part of this thesis is the development and analysis of a high order AP
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scheme for diffusive-scaled linear kinetic equations with general initial conditions.

The dimensionless form of barotropic Euler system contains the parameter Mach number which

can become small, and this results in the need for an AP scheme. Moreover, this system has

an entropy inequality corresponding to a convex entropy function, for all values of the param-

eter. Hence, this system requires treatment with regard to both the structures: asymptotic

preservation and entropy stability. Presented as a third part of this thesis is the development

and analysis of an AP scheme satisfying entropy stability for all values of the parameter in the

barotropic Euler system.

In the fourth part of this thesis, the mathematical properties of Lattice Boltzmann Meth-

ods (LBMs) derived from vector-kinetic models of hyperbolic PDEs are presented. This LBM

framework is extended to hyperbolic PDEs with stiff source terms, where suitable modeling

at the vector-kinetic level combined with well-balancing is introduced to avoid spurious nu-

merical convection arising from the discretisation of source terms and thereby avoiding wave

propagation at incorrect speeds.
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Chapter 1

Introduction

Partial differential equations (PDEs) are used to describe a wide range of physical phenomena

like heat conduction, fluid dynamics, and electromagnetism, and are fundamental in various

fields such as physics, engineering, and applied mathematics. The general form of PDE consists

of an unknown function of several variables and its partial derivatives with respect to those

variables. The solution to a PDE is a function that satisfies the PDE along with any given

initial or boundary conditions.

PDEs can be classified into several types based on their order, linearity and the number of

independent variables. In particular, they are classified into three types based on the nature

of equations and behavior of solutions as elliptic, parabolic and hyperbolic PDEs. The reader

is referred to the books by Evans [106], Strauss [288], Courant and Hilbert [71], to understand

PDEs. In this thesis, we focus on hyperbolic PDE systems and multiscale kinetic equations.

1.1 Hyperbolic systems of PDEs

Hyperbolic PDEs describe wave-like phenomena and the propagation of disturbances through

space and time. They are associated with characteristic curves or surfaces that dictate the

directions in which disturbances propagate. A system of PDEs is hyperbolic if its flux Jacobian

matrix has real eigenvalues and linearly independent eigenvectors. Hyperbolic PDE systems

arise in gas dynamics (as Euler’s system of gas dynamics), oceanography (as shallow water

equations or St. Venant’s system), plasma physics (as ideal magnetohydrodynamics (MHD)

equations), and so on. Inviscid Burgers’ equation is a toy model that eases the understanding

of hyperbolic PDE systems.

As a consequence of non-linearity in convection terms, hyperbolic PDE systems allow for the

formation of shock waves, expansion waves and contact discontinuities even from smooth initial
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data. As derivatives do not exist for the discontinuous solutions, the governing PDE system

becomes invalid when discontinuities develop. In this case, weak or integral form that allows

piece-wise smooth solutions (known as weak solutions) is formulated. Weak solutions that

satisfy the weak form are non-unique. Hence, a suitable criterion that allows one to choose

physically relevant solutions from the class of weak solutions becomes a necessity. In the

context of continuum physics, such admissibility criteria naturally arise from the second law

of thermodynamics. Such criteria are incorporated into analytical theory by mandating that

the admissible solutions satisfy an entropy inequality corresponding to some convex entropy

function.

Hyperbolic PDEs frequently arise in the study of phenomena with disparate scales. For instance,

the multiscale nature of barotropic Euler system is revealed by suitable non-dimensionalisation

that brings out the square of Mach number in the denominator of a term. In the limit of Mach

number approaching zero, this system reduces to incompressible system of equations.

Solving hyperbolic PDEs analytically is often challenging, due to the complex nature of waves.

Since hyperbolic PDE systems are systems of balance or conservation laws, numerical methods

that allow for discrete conservation (like finite volume method) are usually preferred. The

reader is referred to the books by Dafermos [77], Godlewski and Raviart [131], Leray [201], Lax

[195], Benzoni-Gavage and Serre [28], to understand hyperbolic PDE systems.

1.1.1 Numerical discretisation of hyperbolic PDE systems

The initial numerical treatment of hyperbolic PDEs began with finite difference methods.

Researchers like Courant, Friedrichs, and Lewy contributed significantly to the development

of finite difference methods in the 1920s and 1930s. Their landmark paper [70] that provides

inequality conditions on mesh and time step sizes for convergence, laid the foundation of numer-

ical methods for PDEs. In 1950, von Neumann and Richtmyer introduced artificial viscosity to

stabilise the numerical solutions [318]. In another classical paper, Courant, Isaacson and Rees

(CIR) [72] introduced upwind schemes, which became immensely popular. In 1960, numerical

stability and convergence analyses were discussed by Lax and Wendroff in their seminal paper

[193]. These contributions played an important role in the development of numerical methods

for PDEs.

Finite volume methods (FVMs) have become popular due to their natural incorporation

of conservation principles. These are grouped into two major categories as, central and upwind

discretisation methods. Central schemes are designed to introduce stability while simulating

hyperbolic problems, without introducing any specific mechanisms to recognize or deal with

hyperbolicity. Some of the popular central schemes were introduced by Lax and Friedrichs

2



[119, 194], Rusanov [271], Lax and Wendroff [193], MacCormack [210], Richtmyer and Morton

[264], Jameson, Schmidt and Turkel [163], Nessyahu and Tadmor [227], Kurganov and Tadmor

[187], Liu and Tadmor [209], and Jaisankar and Raghurama Rao [159]. On the other hand,

upwind schemes explicitly deal with hyperbolicity by incorporating the information based on

wave propagation directions and the characteristic properties of hyperbolic PDE systems. These

methods can be categorized into four major groups as: Riemann solvers, flux vector splitting

methods, kinetic or Boltzmann schemes, and relaxation schemes.

• Riemann solvers are designed such that the Riemann problem formed by the discon-

tinuous representation of solution variable at cell interface is solved either exactly or

approximately. These include the developments of Godunov [132], Roe [266], Osher and

Solomon [229], Harten, Lax and van Leer (HLL) [148], and Toro, Spruce and Spears [306].

Approximate Riemann solvers are often written in the form of Flux Difference Splitting

(FDS), with appropriate split flux vectors.

• Flux vector splitting (FVS) methods involve splitting of the flux vector into positive and

negative parts based on the eigenvalues of flux Jacobian matrix, to facilitate wave speed

splitting for upwinding. Some of the FVS methods specific to Euler’s equations of gas

dynamics were introduced by Steger and Warming [286] and van Leer [313].

Some special schemes by Liou and Steffen [208], Jameson [162], Zha and Bilgen [333], and

Toro and Vázquez [305] utilize convection-pressure splitting of the flux vectors, based on

utilizing FVS and/or FDS formats.

• Kinetic or Boltzmann schemes utilize the linear nature of transport term in Boltzmann

equation for upwinding, together with the fact that the Euler’s equations of gas dynamics

can be recovered when appropriate moments are taken. Such moment method strategy

based schemes include the developments of Sanders and Prendergast [275], Reitz [261],

Pullin [249], Deshpande and Mandal and Deshpande [85, 211], Perthame [243], Prender-

gast and Xu [248] and Raghurama Rao and Deshpande [255], apart from others. These

schemes are quite robust, but suffer from high numerical diffusion. Some offshoots of

the kinetic schemes are the Discrete Velocity Boltzmann Schemes and Variable (or Flex-

ible) Velocity Boltzmann Schemes. The kinetic schemes of Aregba-Driollet and Natalini

[7], Nandagiri and Raghurama Rao [224], Shrinath et al. [280], Shashi Shekar Roy and

Raghurama Rao [278] are some examples of this sub-category and offer several advan-

tages compared to the traditional kinetic schemes, like simplicity and numerical diffusion

control. Lattice Boltzmann methods (LBMs), which involve discretization of discrete ve-
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locity Boltzmann equation to solve the continuum equations, are also closely related to

the class of kinetic schemes, and are reviewed in chapter 5 (also in our preprint [6]).

• Relaxation schemes are numerical schemes based on semi-linear relaxation systems with

stiff (relaxation) source terms. The hyperbolic PDE system is recovered from the re-

laxation system as the relaxation parameter approaches zero. Relaxation schemes were

introduced by Jin and Xin [173]. Natalini [226] established the connection between the

relaxation systems and discrete velocity Boltzmann systems. The works of Bouchut et

al. [45], Raghurama Rao and Subba Rao [256], Raghurama Rao and Balakrishna [253],

Arun et al. [11] Arun and Lukáčová [9], and Coulette et al. [69] are some of the schemes

belonging to this category.

1.1.2 Higher order discretization strategies

A substantial amount of research has gone into the development of higher order accurate meth-

ods for hyperbolic systems, starting from 1970s. Starting from the early development of Flux

Corrected Transport methods [36] and flux limited and MUSCL schemes of van Leer [311, 312],

significant developments that followed are the shock sensor based central discretization schemes

[163], the development of TVD schemes [146], k-exact reconstruction schemes [21], ENO schemes

[147], WENO schemes [166], ADER schemes [304], spectral volume methods [319], spectral dif-

ference schemes [325], discontinuous Galerkin methods [98], Active Flux Schemes [107], and

various developments within these categories. For some reviews of these methods, the reader

is referred to the following references [315, 268, 161, 191, 304, 321, 105, 320, 15]. All higher

order schemes suffer from inherent oscillations (Gibbs phenomena) due the inherent domination

of higher order terms in the truncation errors, alternatively explained by the inherent higher

order interpolations across large gradients (like shock waves). All the above methods have some

mechanism to suppress these oscillations or wiggles, the most popular among them being the

limiter functions.

1.1.3 Structure preserving schemes

The governing equations (of physical phenomena like fluid flows), which typically represent

physical principles in mathematical representation, often contain rich structures associated

with them. One typical example is the association of an entropy inequality (or entropy conser-

vation, if shocks are not present) with the fluid flow equations, bridging the connection between

fluid dynamics and thermodynamics. It has often been found in the research on development of

numerical methods for fluid flows, that mimicking such structures in the discretization process

often results in very efficient numerical methods. Thus, structure preserving methods, which
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ensure that the numerical solutions preserve the inherent structures present in the governing

hyperbolic PDE systems, have become popular in the last few years. Focus on some of these

structures lead to the concepts of entropy stabilty, asymptotic preservation and well-balancing,

among others. These three concepts also form the subject matter of the new algorithms pre-

sented in this thesis. A broad overview of the numerical methods based on these concepts is

provided here.

• Entropy stability has emerged as a non-linear stability criterion for hyperbolic PDE sys-

tems, and entropy stable methods that inherently satisfy the discrete entropy inequality

have become popular. These methods ensure that the numerical solution satisfies a dis-

crete analogue of the entropy inequality satisfied by the continuous solution. Notable

contributions in this direction include the developments of Tadmor [294], Ismail and Roe

[158], Fjordholm, Mishra and Tadmor [117]. An elaborate review of entropy stable meth-

ods along with a novel development in this direction is presented in chapter 2 (also in our

article [5]).

• Asymptotic Preserving (AP) - The dimensionless form of hyperbolic PDE systems typ-

ically contain one or more dimensionless numbers (such as Mach number for Euler’s

system) that can take different values in different regions of the domain. Numerical

schemes utilised for such systems are expected to work efficiently for different values of

these dimensionless numbers. Typically, for a small value of such a non-dimensional num-

ber, asymptotic analysis provides the useful information of the behaviour of the system.

Asymptotic Preserving (AP) Schemes ensure that numerical discretization preserves the

expected features as the asymptotic limits are reached. Two typical examples of asymp-

totic preserving schemes are those concerned with (i) the compressible flow solvers at

the incompressible limit and (ii) Boltzmann equation (of kinetic theory) based numerical

methods at different scalings to yield methods for compressible and incompressible Euler

and Navier-Stokes equations.

– Low Mach number solvers In the context of Euler’s system, Mach number can be

≥ 1 (compressible regime) or << 1 (incompressible regime). Both these regimes can

occur together in a given problem, and a numerical scheme is expected to handle

them both efficiently. Different methods such as preconditioning methods, artificial

compressibility methods, projection methods, multiple pressure variables methods,

and implicit-explicit (IMEX) methods have been developed to extend the usage of

compressible solvers to incompressible (or low Mach number) limit.
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∗ Preconditioning methods aim to remove the large disparity between different

eigenvalues at the low Mach number limit by multiplying the time derivative of

compressible flow equations with preconditioning matrix. It is aimed at reducing

the stiffness present due to the disparity between different wave speeds at low

Mach number limit. An often associated aspect is the reduction of numerical

diffusion at low Mach number limit, as typical diffusion is inversely proportional

the square of the Mach number. Several researchers such as Choi and Merkle

[62], Turkel [307, 308], van Leer, Lee and Roe [316], Hirsch and Hakimi [151]

attempted to develop preconditioners for low Mach number limit.

∗ Artificial compressibility methods introduced by Chorin [63] add an artificial

compressibility term into the continuity equation, allowing compressible solvers

to handle incompressible flows effectively. The method essentially adds a time

derivative of pressure to the continuity equation, thus forming a strictly hyper-

bolic system from the incompressible equations. Based on such a hyperbolicity

of the system, it becomes easier to introduce the strategies of compressible flow

solvers. Notable contributions in this direction include the developments of

Temam [298], Chang and Kwak [58], McHugh and Ramshaw [215], Pappou and

Tsangaris [231], and Tamamidis et al. [296].

∗ Projection methods introduced by Chorin [64, 65] separate the velocity and pres-

sure updates to improve stability and accuracy in the incompressible limit. No-

table contributions in this direction include the developments of Harlow and

Welch (Marker-and-Cell method) [145], Strikwerda [289], Bell, Colella and Glaz

[22], Brown et al. [49], and Weinan and Liu [322].

∗ Multiple pressure variables method involve an operator splitting technique moti-

vated by the asymptotic analysis of Euler’s system of equations, in the low Mach

number limit. Notable contributions in this direction include the developments

of Klein [183], Geratz et al. [127], Munz et al. [221], and Park and Munz [237].

∗ IMEX methods that involve implicit treatment of stiff terms and explicit treat-

ment of non-stiff terms based on the asymptotic analysis of governing hyperbolic

PDE system have lately become popular. Notable contributions in this direction

include the developments of Ascher et al. [12], Pareschi and Russo [234], and

Albi et al. [1]. These methods aim to recover the discretisation of incompress-

ible equations as the Mach number (in the context of Euler’s system) approaches

zero, and hence are asymptotic preserving. An elaborate review of these methods
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along with a novel development that is both asymptotic preserving and entropy

stable is presented in chapter 4.

– Kinetic theory based AP methods - This topic, with the existing of extensive literature

over several decades, is intricately linked with other issues of the kinetic theory based

numerical methods and thus requires an elaborate description, as presented in the

next section.

• Well-balancing - Hyperbolic PDE systems often contain source terms due to body forces

or chemical reactions. The balance between convection and source terms can support mul-

tiple steady solutions that are stable or unstable. A good numerical scheme is expected to

maintain the stable steady states with required order of accuracy, and such schemes are

known as well-balanced schemes. A numerical scheme that is not well-balanced will result

in a bad time decay towards steady solutions. Notable contributions in the direction of

well-balanced schemes include the developments of van Leer [314], Roe [267], Glaister

[130], Greenberg and Leroux [137], Gosse [135], Alouges, Ghidaglia and Tajchman [2],

Jin [168], and Perthame and Simeoni [244]. Moreover, if the source term involved is stiff,

the imbalance between convection and source terms will result in incorrect wave-speeds

and incorrect locations of discontinuities. Several researchers such as, Colella, Majda and

Roytburd [67], Ben-Artzi [25], LeVeque and Yee [202], Chorin (Random choice method)

[66], Bao and Jin (Random projection method) [17, 18], and Kurganov (Accurate deter-

ministic projection method) [186], attempted to identify the cause and tackle the issue.

Lately, modified Godunov [217], implicit-explicit (IMEX) methods [292] and Threshold

Values Method (TVM) [330] have been used for stiff source term treatment. A simple

and novel way of handling well-balancing in lattice Boltzmann framework is presented in

chapter 5.

Further, apart from finite volume methods (FVM), finite element methods (FEM) gained

significant popularity in solving PDEs during the 1950s and 1960s. However, for hyperbolic

systems, finite element methods faced challenges related to oscillations and numerical stability.

The basic foundation of the FEM is the Galerkin approximation, which essentially leads to

central type discretization and thus needs modifications for application to hyperbolic systems.

Various such modifications have been successfully introduced over the past few decades, leading

to Taylor Galerkin methods, Petrov Galerkin methods, Characteristic Galerkin methods and,

recently, Discontinuous Galerkin methods. The books by Hughes [155], Strang and Fix [287],

Donea and Huerta [99], Hesthaven and Warburton [149], Kuzmin and Hämäläinen [188], Doleǰśı

and Feistauer [98], Zinkiewicz et al. [334] provide insights of some such finite element methods.
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1.2 Multiscale kinetic equations

Kinetic equations represent mathematical models for the evolution of particle distribution func-

tions in phase space. They are widely employed to describe the behavior of systems with numer-

ous interacting particles, such as rarefied gases [35, 54, 205, 317], plasmas [299], granular gases

[300], semiconductors [213], neutron transport [203], and quantum gases [309]. These equa-

tions often exhibit multiscale nature due to disparities in spatial and temporal scales involved.

When the scaling parameter approaches a limit value, the kinetic equation asymptotically de-

composes into a different equation. For instance, different scalings of the Boltzmann equation

lead to different limit equations such as, Euler limit, incompressible Euler limit, and incom-

pressible Navier-Stokes limit. The reader is referred to Bardos, Golse and Levermore [20, 19],

Golse and Saint-Raymond [134], and the book by Saint-Raymond [274] for details on different

limits of the Boltzmann equation. Traditional numerical methods may struggle to efficiently

resolve the behavior of the system, especially when disparities in scales lead to stiffness issues.

1.2.1 Numerical discretisation of multiscale kinetic equations

The Direct Simulation Monte Carlo (DSMC) method by Bird [31] and Nanbu [223] solves

the kinetic equation by using statistical sampling to approximate the solution. Although this

stochastic method guarantees efficiency and preservation of physical properties, it becomes

extremely expensive to avoid statistical fluctuations near continuum regimes. Deterministic

numerical methods for kinetic equations are considered here and their broad overview is pre-

sented. These consist of semi-Lagrangian methods, discrete velocity methods, spectral methods,

domain decomposition methods and asymptotic preserving methods.

• Semi-Lagrangian methods consider the Lagrangian nature of transport process, and op-

erate on a fixed computational grid. The kinetic equation is often solved by splitting

technique that allows the natural application of Lagrangian method to linear transport

terms. Several approaches such as, particle-in-cell methods (Birdsall and Langdon [32]),

flux-balance methods (Boris and Book [36]), weighted essentially non-oscillatory (WENO)

methods (Carrillo and Vecil [53]), and discontinuous Galerkin (DG) methods (Qiu and

Shu [252], Ayuso, Carrillo and Shu [14]) can be used for efficient simulation of transport

terms in kinetic equations. Some of the semi-Lagrangian methods applied to Vlasov-

Poisson system are due to Cheng and Knorr [60], Crouseilles et al. [76], Sonnendrücker et

al. [284] and Filbet et al. [116]. Notable developments of semi-Lagrangian methods for

Boltzmann-Gross-Krook (BGK) model of rarefied gas dynamics system are by Russo and

Filbet [272], Russo, Santagati and Yun [273], and Dimarco and Loubére [87, 88]. Further,
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Lattice Boltzmann methods (LBMs) can be considered as semi-Lagrangian methods with

exact transport, and its elaborate review is presented in chapter 5 (also in our preprint

[6]).

• Discrete velocity methods are known for approximating the Boltzmann equation in veloc-

ity space. They have been historically used to ease the mathematical study of rarefied

gases (Carleman [51], Broadwell [48], Gatignol [126], Cabannes, Gatignol and Luo [50]).

Recently, these methods are related to consistent velocity discretisations of Boltzmann

equation (Goldstein et al. [133], Rogier and Schneider [269], Mischler [218], Panferov

and Heintz [230], Fainsilber et al. [108]). However, these methods have limited accuracy

and high computational cost when compared to the stochastic methods for evaluation of

Boltzmann integral. Yet, these methods are very robust when simple collision operators

such as BGK model are used (Mieussens [216]).

• Spectral methods use Fast Fourier Transform (FFT) theory for kinetic equations, and

have spectral accuracy (i.e., error tends to zero faster than O(Nk) for any k < 0, where

N is the number of grid points) if the solution is sufficiently smooth. Several notable

contributions were made in this direction for Boltzmann equation (Pareschi and Perthame

[232], Pareschi and Russo [233]), Landau equation (Filbet and Pareschi [114]), granular

gases (Filbet et al. [115]), and quantum gases (Filbet et al. [112]). Further, it is possible

to speed up the spectral methods by using fast summation algorithms and this makes

them competitive with DSMC methods for non-stationary flows (Filbet [111], Wu et al.

[324], Gamba and Tharkabhushanam [122]).

• Domain decomposition methods have been crucial for solving large-scale problems effi-

ciently by dividing the computational domain into subdomains. They involve usage of

the kinetic description in domains far from equilibrium, and the numerical discretisation

of limit equation in domains near equilibrium. The difficulty, however, is identification,

modelling and numerics of the transition zone between different descriptions, and the re-

quirement of moving interfaces to couple different regions. Notable contributions in this

direction include the developments of Bourgat et al. [47], Bourgat, LeTallec and Tidriri

[46], Schneider [276], Tiwari and Klar [302], Tiwari [301], Degond et al. [79, 80], Degond

and Dimarco [78], and Kolobov et al. [185].

• Asymptotic Preserving (AP) methods capture the correct limiting behavior as certain

scaling parameters approach particular values. This is essential for ensuring that the

numerical solution converges to the correct solution in the limiting case, with uniform
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accuracy and uniform stability across different values of the scaling parameter. A review

of AP schemes for various systems can be found in the article of Jin [169], and technical

report of Pareschi and Russo [235]. Some of the AP schemes designed for Boltzmann

equation in classical fluid limit are due to Gabetta et al. [121], Filbet and Jin [113], and

Dimarco and Pareschi [91, 92]. Notable AP schemes for kinetic equation in diffusion limit

are due to Jin et al. [172], Bennoune et al. [27], Lemou and Mieussens [200], Boscarino

et al. [37], and Dimarco et al. [94]. These include exponential Runge-Kutta and implicit-

explicit Runge-Kutta (IMEX-RK) strategies. An overview of IMEX-RK technique along

with a novel development of AP scheme for kinetic equation in diffusion limit is presented

in chapter 3 (also in our preprint [3]).

1.3 Outline of the thesis

The main theme of the thesis is development and analysis of structure preserving numerical

methods that yield relevant numerical solutions. Each chapter presents a novel structure pre-

serving numerical scheme for some hyperbolic PDE system or multiscale kinetic equation. The

outline is as follows.

The governing systems considered in chapter 2 are hyperbolic PDE system and its vector-kinetic

model. Entropy stable schemes for a given hyperbolic system are available in literature. It is

also known from literature that the entropy inequality of a hyperbolic system is obtained as

a moment of the entropy inequality of vector-kinetic model. However, this correspondence is

not necessarily maintained in numerical discretisations. In chapter 2, a novel entropy stable

numerical scheme for a vector-kinetic model of hyperbolic PDE systems is developed. It is

shown that this scheme also recovers entropy stability of the hyperbolic PDE system.

Chapter 3 is concerned about multiscale kinetic equations with diffusion scaling. In the asymp-

totic limit, this results in a diffusion equation. A novel high order asymptotic preserving

method that recovers a consistent, accurate and stable numerical scheme for the asymptotic

limit equation has been developed in this chapter. This scheme can handle general (both well-

prepared and non-well-prepared) initial conditions. This chapter also presents the extension of

this framework and asymptotic analysis to advection-diffusion asymptotics and inflow bound-

ary problems.

In chapter 4, the governing system considered is the barotropic Euler system. The dimensionless

form of this system contains Mach number that can become small. This dimensionless system

has an entropy inequality corresponding to a convex entropy function, for all values of Mach

number. In the limit of Mach number approaching zero, this system reduces to incompressible

system of equations. Thus, it is evident that this requires both asymptotic preservation and

10



entropy stability. In this chapter, a novel asymptotic preserving scheme that satisfies entropy

stability for the barotropic Euler system has been developed.

Chapter 5 is concerned about hyperbolic PDEs and associated vector-kinetic models. Lattice

Boltzmann methods (LBMs) have been derived from vector-kinetic models of hyperbolic PDEs

in the literature. In this chapter, crucial properties like H-inequality, macroscopic finite dif-

ference form, consistency, total variation boundedness and positivity of such LBMs have been

analysed, and a novel way to handle well-balancing between convection and source terms of

hyperbolic PDEs in the LBM framework has been presented.

Chapter 6 concludes the thesis.
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Chapter 2

Entropy conserving/stable scheme for a

vector-kinetic model of hyperbolic

systems

The moment of entropy equation for vector-BGK model results in the entropy equation for

macroscopic model. However, this is usually not the case in numerical methods because the

current literature consists mostly of entropy conserving/stable schemes for macroscopic model.

In this chapter, we attempt to fill this gap by developing an entropy conserving scheme for

vector-kinetic model, and we show that the moment of this results in an entropy conserving

scheme for macroscopic model. With the numerical viscosity of entropy conserving scheme

as reference, the entropy stable scheme for vector-kinetic model is developed in the spirit of

Tadmor [293]. We show that the moment of this scheme results in an entropy stable scheme

for macroscopic model. The schemes are validated on several benchmark test problems for

scalar and shallow water equations, and conservation/stability of both kinetic and macroscopic

entropies are presented.

2.1 Introduction

The connection between entropy functions and symmetrisability of hyperbolic systems was ex-

plained in [146, 156], and this led to entropy-based non-linear stability analysis of numerical

schemes. In the seminal work in [293, 294], a general condition to conserve/dissipate en-

tropy of a semi-discrete scheme for hyperbolic system was introduced. Following this, many

developments on fluxes satisfying entropy conservation/dissipation condition for various hy-

perbolic systems were made. These include developments specific for shallow water equations

12



[124, 323, 236], Euler’s equations [21, 158, 251, 56, 259, 260, 125, 73, 61, 328], Navier-Stokes

equations [326, 212, 257] and magneto hydro-dynamics equations [57]. Recently, several inter-

esting studies such as, entropy stability for conservation laws with non-convex flux functions

[197], and characterisation of stability [123] and robustness (for under-resolved flows) [55] of

high order entropy stable schemes were carried out.

On the other hand, kinetic entropy formulations were introduced for hyperbolic equations like

multi-dimensional scalar conservation laws, isentropic Euler and full Euler equations [245, 206,

207, 86]. Discrete kinetic models with entropy considerations were also proposed for hyperbolic

systems [7, 226, 43, 44, 30, 45]. Specifically, in [43] it was shown that the entropy inequalities

for a hyperbolic system can be derived as minimisation of entropies of vector-kinetic equation

with BGK model. This approach of obtaining entropy inequalities from kinetic-BGK models is

a promising strategy to characterise weak solutions of hyperbolic systems [250]. Hence, in this

chapter, we attempt to develop entropy stable schemes (in the sense of [293, 294]) for a kinetic

model based on [43] and show that they yield entropy stability for the hyperbolic system. This

is in contrast to shock capturing schemes [280] based on discrete kinetic models.

A kinetic entropy stable scheme for continuous velocity Boltzmann’s equation was recently de-

veloped in [160]. Although this scheme is entropy stable in the Euler limit, it employs huge

number of velocities (243 for one dimensional problems) as the velocity space must be suffi-

ciently resolved to satisfy the collision invariance. In our work, due to the usage of discrete

kinetic models instead of continuous velocity Boltzmann’s equation, we obtain an entropy stable

scheme for the vanishing epsilon limit with very few velocities (as low as 2 for one dimensional

problems). Moreover, our formalism is general enough to construct entropy stable scheme for

a given hyperbolic system, while the work of [160] is specific to the Euler system.

The chapter is organised as follows. In section 2.2, we briefly describe the entropy frame-

work and entropy conservation/stability conditions required to be satisfied by a semi-discrete

scheme for hyperbolic system (or macroscopic model). Then, in section 2.3, we provide a brief

description of the vector-BGK model in [43]. In section 2.4, we describe our modification to

vector-BGK model, termed as the vector-kinetic model. This modification allows us to obtain

entropy flux potentials required for developing entropy preserving scheme for vector-kinetic

model. Then, in sections 2.5 and 2.6 we develop entropy conserving and stable schemes for

vector-kinetic model, and show that these become entropy conserving and stable schemes for

macroscopic model upon taking moments. In section 2.7, we describe the time discretisation

strategies employed to complete our scheme. Then, in section 2.8, we verify our schemes on

various numerical test problems. Section 2.9 concludes the chapter. The list of symbols used

in the chapter are shown in Table 2.1.
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Symbol Description
U Conserved variable vector in macroscopic model

G(d)(U) Flux vector (along direction d) in macroscopic model
η(U) Entropy function for macroscopic model
ω(d)(U) Entropy flux function for macroscopic model
ψ(d) Entropy flux potential for macroscopic model

G
(d)⋆

id± 1
2

Entropy conserving interface flux for macroscopic model

Q
(d)⋆

id± 1
2

Numerical viscosity corresponding to entropy conserving flux for
macroscopic model

G
(d)

id± 1
2

Entropy stable interface flux for macroscopic model

Fm Dependent variable vector in vector-kinetic model

v
(d)
m Discrete velocities in vector-kinetic model

v
(d)
m Fm

Flux (along direction d) of the dependent variable vector in
vector-kinetic model

Hη
m Entropy function for vector-kinetic model

v
(d)
m Hη

m Entropy flux function for vector-kinetic model

χ
(d)
m Entropy flux potential for vector-kinetic model(

v
(d)
m Fm

)⋆
id± 1

2

Entropy conserving interface flux for vector-kinetic model

Q
(d)⋆

m
id±

1
2

Numerical viscosity corresponding to entropy conserving flux for
vector-kinetic model(

v
(d)
m Fm

)
id± 1

2

Entropy stable interface flux for vector-kinetic model

V Entropy variable

Table 2.1: Table of symbols

14



2.2 Macroscopic model

Consider the hyperbolic system (or macroscopic model),

∂tU+ ∂xd
G(d)(U) = 0 (2.1)

where U : Ω × [0, T ] → Rp and G(d)(U) : Rp → Rp, with d ∈ {1, 2, .., D}. Here Ω is a convex

subset of RD.

2.2.1 Entropy framework

Here, we briefly recall the underlying theory (presented in [293, 294, 295]) behind development

of entropy conserving/stable scheme for eq. (2.1).

If the macroscopic model in eq. (2.1) admits convex entropy-entropy flux pair
(
η(U), ω(d)(U)

)
that satisfies,

∂Uω
(d) = ∂Uη · ∂UG(d) ⇔ ∂2Uη · ∂UG(d) is symmetric (2.2)

then the following entropy inequality holds.

∂tη(U) + ∂xd
ω(d)(U) ≤ 0 (2.3)

Equality holds in smooth regions, while strict inequality holds in non-smooth regions.

Due to the convexity of η(U), there exists one-one correspondence U → V := ∂Uη such that

the following equivalent symmetric form of eq. (2.1) holds true.

∂VU ∂tV + ∂UG
(d) ∂VU ∂xd

V = 0 (2.4)

Here, ∂VU = (∂2Uη(U))
−1

is symmetric positive-definite (due to the convexity of η(U)) and

∂VG
(d) = ∂UG

(d) ∂VU is symmetric (refer Harten [146] for theorems due to Godunov and

Mock).

Further, the compatibility condition in eq. (2.2) can be re-written in terms of entropy variable

V, thanks to the convexity of η(U) that assures existence of (∂UV)−1.

∂Vω
(d) = V · ∂VG(d) (2.5)
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Due to the symmetric nature of ∂VG
(d), there exist potentials ψ(d)(V) such that ∂Vψ

(d) =

G(d)(V). Therefore, according to eq. (2.5), there exist entropy flux potentials,

ψ(d)(V) = V ·G(d)(V)− ω(d)(V) (2.6)

2.2.2 Entropy conserving scheme

Consider a structured grid with grid size ∆xd along each direction d. Then, a three-point (along

each direction d) semi-discrete conservative scheme for eq. (2.1) is,

d

dt
Ui +

1

∆xd

(
G

(d)⋆

id+
1
2

−G
(d)⋆

id− 1
2

)
= 0 (2.7)

Here i denotes the index for cell centre of each cell/finite volume, and id ± 1
2
denote indices for

right/left interfaces of cell i along direction d. For consistency, the numerical flux G
(d)⋆

id± 1
2

:=

G
(d)⋆

id± 1
2

(Ui,Uid±1) is such that G
(d)⋆

id± 1
2

(U,U) = G(d)(U), where id ± 1 denote indices for the cell

centres of cells to the right/left of cell i along direction d.

The scheme in eq. (2.7) is entropy conserving iff the interface numerical fluxes satisfy the entropy

conserving condition (derived in [293, 294]),〈
[[V]]id+ 1

2
,G

(d)⋆

id+
1
2

〉
=
[[
ψ(d)

]]
id+

1
2

(2.8)

Here, [[(.)]]id+ 1
2
denotes the jump (.)id+1 − (.)i. Then, the following three-point (along each

direction d) entropy equality holds true.

d

dt
η (Vi) +

1

∆xd

(
ω
(d)⋆

id+
1
2

− ω
(d)⋆

id− 1
2

)
= 0 (2.9)

The interface numerical entropy flux consistent with eq. (2.6) is given by

ω
(d)⋆

id± 1
2

=
1

2
(Vi +Vid±1) ·G(d)⋆

id± 1
2

− 1

2

(
ψ

(d)
i + ψ

(d)
id±1

)
(2.10)

Further, the entropy conserving numerical flux G
(d)⋆

id+
1
2

satisfying eq. (2.8) can be evaluated along

the path Vid+
1
2
(ξ) = Vi + ξ∆Vid+

1
2
as,

G
(d)⋆

id± 1
2

=
1

2

(
G

(d)
i +G

(d)
id±1

)
− 1

2
Q

(d)⋆

id± 1
2

[[V]]id± 1
2

(2.11)
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with

Q
(d)⋆

id+
1
2

=

∫ 1

0

(2ξ − 1) ∂VG
(d)
(
Vid+

1
2
(ξ)
)
dξ (2.12)

The term Q
(d)⋆

id± 1
2

which is symmetric (need not be positive-definite) is considered as numerical

viscosity coefficient matrix. This counterbalances dispersion from the average flux. Further, the

entropy conserving scheme is second order accurate in space (refer [293, 294]). Construction of

higher order entropy conserving fluxes as linear combinations of second order accurate entropy

conserving fluxes G
(d)⋆

id± 1
2

is discussed in [196].

2.2.3 Entropy stable scheme

The three-point (along each direction d) consistent flux,

G
(d)

id± 1
2

= G
(d)⋆

id± 1
2

− 1

2
D

(d)

id± 1
2

[[V]]id± 1
2

(2.13)

with D
(d)

id± 1
2

= Q
(d)

id± 1
2

− Q
(d)⋆

id± 1
2

is entropy stable if and only if D
(d)

id± 1
2

is positive-definite. Here

Q
(d)

id± 1
2

is the numerical viscosity coefficient matrix corresponding to entropy stable scheme. The

scheme then satisfies the three-point entropy inequality,

d

dt
η (Vi) +

1

∆xd

(
ω
(d)

id+
1
2

− ω
(d)

id− 1
2

)
=

− 1

4∆xd

(
[[V]]id+ 1

2
·D(d)

id+
1
2

[[V]]id+ 1
2
+ [[V]]id− 1

2
·D(d)

id− 1
2

[[V]]id− 1
2

)
≤ 0 (2.14)

Here, the consistent numerical entropy flux at interface is given by,

ω
(d)

id+
1
2

= ω
(d)⋆

id+
1
2

− 1

4
(Vi +Vid+1) ·D(d)

id+
1
2

[[V]]id+ 1
2

(2.15)

The entropy stable flux G
(d)

id± 1
2

given by eq. (2.13) is first order accurate in space (refer Tadmor

[293, 294]). To achieve higher order accuracy in space, the term [[V]]id+ 1
2
in eq. (2.13) must be

replaced by ⟨⟨V⟩⟩id+ 1
2
= V−

id+1 −V+
i where V−

id+1 and V+
i are higher order reconstructions of

V at interface id +
1
2
(refer [118]).

2.3 Vector-BGK model

In this section, we briefly describe the vector-BGK model presented in [43]. Consider,

∂tfm + ∂xd

(
v(d)m fm

)
= −1

ϵ
(fm − Fm(U)) (2.16)
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where ϵ is the relaxation parameter. Here, fm := fm(x1, .., xd, .., xD, v
(1)
m , .., v

(d)
m , .., v

(D)
m , t) ∈ Rp,

Fm : Rp → Rp, m ∈ {1, 2, ..,M} and M is the number of discrete velocities. Splitting of

streaming and relaxation operators in eq. (2.16) gives,

Streaming: ∂tfm + ∂xd

(
v(d)m fm

)
= 0 (2.17)

Relaxation:
d

dt
fm = −1

ϵ
(fm − Fm(U)) (2.18)

Instantaneous relaxation (i.e., ϵ = 0) in the relaxation equation above yields fm = Fm(U).

This is inserted into the streaming equation for its evolution. Now, it can be seen that if the

following relations are satisfied,

M∑
m=1

Fm(U) = U and
M∑

m=1

v(d)m Fm(U) = G(d)(U) (2.19)

then
∑M

m=1 eq. (2.16) → eq. (2.1) as ϵ→ 0.

2.3.1 Entropy framework

Following the definition of entropy function for vector-BGK model given by equations (E0)-(E2)

in [43], let us define the entropy function Hη
m (fm) as:

Hη
m (fm) is a convex function with respect to fm (2.20)

M∑
m=1

Hη
m (Fm(U)) = η(U) (2.21)

M∑
m=1

Hη
m (Fm(U)) ≤

M∑
m=1

Hη
m (fm) (2.22)

Then, taking inner product of eq. (2.16) with the sub-differential of Hη
m at Fm(U) and using

(2.20), (2.21) and (2.22), the following is obtained.

∂tH
η
m(fm) + ∂xd

(
v(d)m Hη

m(fm)
)
≤ 1

ϵ

(
Hη

m (Fm(U))−Hη
m (fm)

)
⇒

M∑
m=1

(
∂tH

η
m(fm) + ∂xd

(
v(d)m Hη

m(fm)
))

≤ 0

18



⇒ ∂tη(U) + ∂xd

(
M∑

m=1

v(d)m Hη
m(Fm(U))

)
≤ 0 in the limit ϵ→ 0 (2.23)

If ω(d)(U) =
∑M

m=1 v
(d)
m Hη

m(Fm(U)), then eq. (2.23) is same as eq. (2.3). The reader is referred

to [43] for details.

Thus, entropy inequality of the macroscopic model (eq. (2.1)) can be obtained as minimisation of

entropies of the vector-BGK model (eq. (2.16)). This inspires one to develop entropy structure

preserving numerical schemes for vector-BGK model that recover the entropy inequality of

equivalent macroscopic scheme. However, the framework of vector-BGK model does not ensure

the existence of ∂2fmH
η
m (Fm(U)) which is crucial in obtaining entropy flux potentials that allow

for the consistent definition of interface numerical entropy fluxes. Hence, we resort to a much

simpler model in the relaxed limit without the stiff relaxation parameter (hereafter referred as

vector-kinetic model), and make the necessary modification to allow for the definition of entropy

flux potentials.

2.4 Vector-kinetic model

In this model, we consider the evolution of relaxed limit (ϵ = 0):

∂tFm + ∂xd

(
v(d)m Fm

)
= 0 (2.24)

Let us define Fm(U) as in [43],

Fm(U) = amU+ b(d)m G(d) (U) (2.25)

with

M∑
m=1

am = 1,
M∑

m=1

b(d)m = 0 (2.26)

M∑
m=1

v(j)m am = 0,
M∑

m=1

v(j)m b(d)m = δjd (2.27)

In the light of moment constraints in eqs. (2.26) and (2.27), the definition of Fm(U) in eq. (2.25)

satisfies eq. (2.19).
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2.4.1 Entropy framework

Define Hη
m as in [43],

Hη
m(U) = amη (U) + b(d)m ω(d) (U) (2.28)

Due to the constraints in eqs. (2.26) and (2.27), Hη
m satisfies,

M∑
m=1

Hη
m(U) = η(U) and

M∑
m=1

v(d)m Hη
m(U) = ω(d)(U) (2.29)

We assume that the eigenvalues of ∂UFm are positive, unlike in [43] where the eigenvalues are

considered to be non-negative. It will be seen that this modification allows the definition of

entropy flux potentials required in the construction of entropy preserving numerical scheme.

As ∂UFm is now invertible, ∂FmH
η
m satisfying ∂UH

η
m = ∂FmH

η
m · ∂UFm exists. Therefore, the

inner product of eq. (2.24) with ∂FmH
η
m gives,

∂tH
η
m + ∂xd

(
v(d)m Hη

m

)
= 0 (2.30)

It can be seen that
∑M

m=1 (eq. (2.30)) becomes eq. (2.3) with equality. Motivated by this, in this

chapter, we develop entropy preserving scheme for vector-kinetic model that recovers entropy

preservation of equivalent macroscopic scheme.

Lemma 2.1 If Fm(U) and Hη
m(U) respectively follow eqs. (2.25) and (2.28) with constants

am, b
(d)
m satisfying the moment constraints in eqs. (2.26) and (2.27) and rendering the eigen-

values of ∂UFm to be positive, then ∂FmH
η
m = ∂Uη.

Proof: Due to the compatibility condition in eq. (2.2), it can be seen from differentiation

(with respect toU) of eqs. (2.25) and (2.28) that ∂UH
η
m = ∂Uη ·∂UFm. Since ∂UFm is invertible,

∂Uη = ∂UH
η
m · (∂UFm)

−1. We already saw that ∂FmH
η
m = ∂UH

η
m · (∂UFm)

−1. 2

This lemma shows that the entropy variables for macroscopic and vector-kinetic models are

equal, i.e.,

V = ∂Uη = ∂FmH
η
m. (2.31)

The choice of constants am, b
(d)
m satisfying assumptions in the above lemma are discussed in

2.10.

As a consequence of lemma 2.1, we have ∂2Fm
Hη

m = ∂2Uη ·(∂UFm)
−1. Further, (∂2Uη)

−1
∂2Fm

Hη
m =

(∂UFm)
−1 can be expressed as

(
∂2Uη

)− 1
2
(
∂2Uη

)− 1
2
(
∂2Fm

Hη
m

) (
∂2Uη

)− 1
2
(
∂2Uη

) 1
2 = (∂UFm)

−1 (2.32)
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thanks to the positive-definiteness of ∂2Uη. Thus, (∂
2
Uη)

− 1
2
(
∂2Fm

Hη
m

)
(∂2Uη)

− 1
2 and (∂UFm)

−1 are

similar and therefore their eigenvalues are same.

Lemma 2.2 If ∂2Uη is positive-definite and eq. (2.32) holds true, then ∂2Fm
Hη

m is positive-definite

iff the eigenvalues of (∂UFm)
−1 are positive.

Proof: (∂2Uη)
− 1

2
(
∂2Fm

Hη
m

)
(∂2Uη)

− 1
2 is symmetric as ∂2Uη and ∂2Fm

Hη
m are symmetric. Further,

we have ∀y ̸= 0 ∈ Rp,

y ·
(
∂2Uη

)− 1
2
(
∂2Fm

Hη
m

) (
∂2Uη

)− 1
2 y = z ·

(
∂2Fm

Hη
m

)
z (2.33)

where z = (∂2Uη)
− 1

2 y ̸= 0 (as ∂2Uη is positive-definite).

⇐ If the eigenvalues of (∂UFm)
−1 are positive, then (∂2Uη)

− 1
2
(
∂2Fm

Hη
m

)
(∂2Uη)

− 1
2 is positive-

definite due to eq. (2.32). Then ∂2Fm
Hη

m is rendered positive-definite by eq. (2.33).

⇒ If ∂2Fm
Hη

m is positive-definite, then by eq. (2.33) (∂2Uη)
− 1

2
(
∂2Fm

Hη
m

)
(∂2Uη)

− 1
2 is positive-

definite. Then, the eigenvalues of (∂UFm)
−1 are positive due to eq. (2.32). 2

Thus, as consequence of lemma 2.1 and lemma 2.2, eq. (2.31) and positive-definiteness of

∂2Fm
Hη

m are guaranteed iff the eigenvalues of ∂UFm are positive. Using the one-to-one corre-

spondence between U and V, we consider Fm (U) = Fm (U (V)). Hence the vector-kinetic

model in eq. (2.24) can be expressed in the equivalent symmetric form

∂VFm∂tV + ∂V
(
v(d)m Fm

)
∂xd

V = 0 (2.34)

Here ∂VFm =
(
∂2Fm

Hη
m

)−1
is symmetric positive-definite. Due to the linearity of vector-kinetic

model, ∂V

(
v
(d)
m Fm

)
= v

(d)
m ∂VFm is symmetric. As a result, there exist potentials χ

(d)
m (V) such

that

∂Vχ
(d)
m = v(d)m Fm (2.35)

Further, the compatibility condition

∂Fm

(
v(d)m Hη

m

)
= ∂FmH

η
m · ∂Fm

(
v(d)m Fm

)
(2.36)

is also satisfied rendering Hη
m as the convex entropy function for vector-kinetic model. Note

that this compatibility condition is always true for any convex Hη
m satisfying eq. (2.28) due

to the linear nature of vector-kinetic model, unlike the compatibility condition (eq. (2.2)) for

macroscopic model. In terms of V, the above compatibility condition for vector-kinetic model

becomes,

∂V
(
v(d)m Hη

m

)
= V · ∂V

(
v(d)m Fm

)
(2.37)
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thanks to the inverse of ∂FmV. Therefore, due to eqs. (2.35) and (2.37), there exist entropy

flux potentials

χ(d)
m (V) = V · v(d)m Fm − v(d)m Hη

m = ∂FmH
η
m · v(d)m Fm − v(d)m Hη

m (2.38)

Thus, we have obtained the entropy flux potentials that are crucial in the construction of

entropy preserving numerical scheme for vector-kinetic model.

2.5 Entropy conserving scheme for vector-kinetic model

The three-point (along each direction d) semi-discrete conservative scheme for vector-kinetic

model in eq. (2.24) on a structured grid is given by,

d

dt
Fmi

+
1

∆xd

((
v(d)m Fm

)⋆
id+

1
2

−
(
v(d)m Fm

)⋆
id− 1

2

)
= 0 (2.39)

Here, Fmi
(t) = Fm (Vi(t)) and consistent

(
v
(d)
m Fm

)⋆
id+

1
2

= v
(d)
m Fm(Vi,Vid+1) is such that

v
(d)
m Fm(V,V) = v

(d)
m Fm(V). Consider the inner product (∂FmH

η
m)i ·

(
v
(d)
m Fm

)⋆
id± 1

2

:

(∂FmH
η
m)i ·

(
v(d)m Fm

)⋆
id± 1

2

=
1

2

(
(∂FmH

η
m)id±1 + (∂FmH

η
m)i
)
·
(
v(d)m Fm

)⋆
id± 1

2

−1

2

(
(∂FmH

η
m)id±1 − (∂FmH

η
m)i
)
·
(
v(d)m Fm

)⋆
id± 1

2

If the interface numerical flux
(
v
(d)
m Fm

)⋆
id+

1
2

satisfies the entropy conserving condition,

〈
[[∂FmH

η
m]]id+ 1

2
,
(
v(d)m Fm

)⋆
id+

1
2

〉
=
[[
χ(d)
m

]]
id+

1
2

(2.40)

then,

(∂FmH
η
m)i ·

(
v(d)m Fm

)⋆
id± 1

2

=
1

2

(
(∂FmH

η
m)id±1 + (∂FmH

η
m)i
)
·
(
v(d)m Fm

)⋆
id± 1

2

− 1

2

(
χ(d)
mid±1

− χ(d)
mi

)
Thus, the inner product of eq. (2.39) with (∂FmH

η
m)i gives the three-point entropy equality,

d

dt
Hη

mi
+

1

∆xd

((
v(d)m Hη

m

)⋆
id+

1
2

−
(
v(d)m Hη

m

)⋆
id− 1

2

)
= 0 (2.41)
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iff it satisfies eq. (2.40), and the interface numerical entropy fluxes
(
v
(d)
m Hη

m

)⋆
id± 1

2

consistent

with eq. (2.38) are given by,

(
v(d)m Hη

m

)⋆
id± 1

2

=
1

2

(
(∂FmH

η
m)i + (∂FmH

η
m)id±1

)
·
(
v(d)m Fm

)⋆
id± 1

2

− 1

2

(
χ(d)
mi

+ χ(d)
mid±1

)
(2.42)

It is seen that the entropy flux potentials χ
(d)
mi enable us to consistently relate the two interfacial

unknowns, numerical fluxes
(
v
(d)
m Fm

)⋆
id± 1

2

and numerical entropy fluxes
(
v
(d)
m Hη

m

)⋆
id± 1

2

. Further,

let us define the interface numerical fluxes for macroscopic model as the moment of interface

numerical fluxes for vector-kinetic model as,

G
(d)⋆

id± 1
2

=
M∑

m=1

(
v(d)m Fm

)⋆
id± 1

2

(2.43)

Theorem 2.1 If the three-point semi-discrete conservative scheme (eq. (2.39)) for vector-kinetic

model with

• Fmi
= amUi + b

(d)
m G

(d)
i , ∀i

• interface numerical fluxes
(
v
(d)
m Fm

)⋆
id± 1

2

satisfying the entropy conserving condition in

eq. (2.40) and

• constants am, b
(d)
m satisfying the moment constraints in eqs. (2.26) and (2.27) while ren-

dering positivity of eigenvalues of ∂UFm

is used, and if the convex entropy function corresponding to it is Hη
mi

= amηi+b
(d)
m ω

(d)
i , ∀i, then

1.
∑M

m=1 (eq. (2.39)) becomes

d

dt
Ui +

1

∆xd

(
G

(d)⋆

id+
1
2

−G
(d)⋆

id− 1
2

)
= 0 (2.44)

with G
(d)⋆

id± 1
2

given by eq. (2.43),

2. the interface numerical flux G
(d)⋆

id± 1
2

given by eq. (2.43) satisfies the entropy conserving

condition for macroscopic model (eq. (2.8)), and

3. the three-point entropy equality for macroscopic model (eq. (2.9)) holds true with interface

numerical entropy flux ω
(d)⋆

id± 1
2

given by eq. (2.10).
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Proof: Due to moment constraint in eq. (2.26),
∑M

m=1Fmi
= Ui. Therefore,

∑M
m=1 (eq. (2.39))

becomes eq. (2.44) with G
(d)⋆

id± 1
2

given by eq. (2.43), thus proving 1.

By eq. (2.31), [[∂FmH
η
m]]id± 1

2
= [[V]]id± 1

2
= [[∂Uη]]id± 1

2
is not a function of m. Hence, the

moment of eq. (2.40) gives,〈
[[V]]id± 1

2
,

M∑
m=1

(
v(d)m Fm

)⋆
id± 1

2

〉
=

[[
M∑

m=1

χ(d)
m

]]
id± 1

2

(2.45)

From eq. (2.38), it can be seen that χ
(d)
mi = Vi.v

(d)
m Fmi

− v
(d)
m Hη

mi
, ∀i. Hence,

∑M
m=1 χ

(d)
mi =

Vi.
∑M

m=1

(
v
(d)
m Fmi

)
−
∑M

m=1

(
v
(d)
m Hη

mi

)
, ∀i. We also have

∑M
m=1 v

(d)
m Fmi

= G
(d)
i and

∑M
m=1 v

(d)
m Hη

mi
=

ω
(d)
i , ∀i due to the action of moment constraint in eq. (2.27) on Fmi

and Hη
mi
. Therefore, by

eq. (2.6),
∑M

m=1 χ
(d)
mi = ψ

(d)
i , ∀i. Using this and eq. (2.43) in eq. (2.45), we obtain,〈

[[V]]id± 1
2
,G

(d)⋆

id± 1
2

〉
=
[[
ψ(d)

]]
id± 1

2

(2.46)

This proves 2.

We know that the three-point entropy equality in eq. (2.41) holds true corresponding to the

assumptions stated in theorem 2.1. Since
∑M

m=1(H
η
m)i = ηi, ∀i (due to the action of moment

constraint in eq. (2.26) on (Hη
m)i), moment of eq. (2.41) gives,

d

dt
ηi +

1

∆xd

(
M∑

m=1

(
v(d)m Hη

m

)⋆
id+

1
2

−
M∑

m=1

(
v(d)m Hη

m

)⋆
id− 1

2

)
= 0 (2.47)

Since (∂FmH
η
m)i = Vi = (∂Uη)i is not a function of m (by eq. (2.31)), moment of

(
v
(d)
m Hη

m

)⋆
id± 1

2

given by eq. (2.42) yields,

M∑
m=1

(
v(d)m Hη

m

)⋆
id± 1

2

=
1

2
(Vi +Vid±1) ·

M∑
m=1

(
v(d)m Fm

)⋆
id± 1

2

− 1

2

(
M∑

m=1

χ(d)
mi

+
M∑

m=1

χ(d)
mid±1

)
(2.48)

We have already seen that
∑M

m=1 χ
(d)
mi = ψ

(d)
i , ∀i. Using this and eq. (2.43), we obtain,

M∑
m=1

(
v(d)m Hη

m

)⋆
id± 1

2

=
1

2
(Vi +Vid±1) ·G(d)⋆

id± 1
2

− 1

2

(
ψ

(d)
i + ψ

(d)
id±1

)
(2.49)

It can be seen from eq. (2.10) that
∑M

m=1

(
v
(d)
m Hη

m

)⋆
id± 1

2

= ω
(d)⋆

id± 1
2

. This proves 3. 2

In the light of eq. (2.31) resulting from lemma 2.1, moments involved in the proof of above
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theorem become linear since ∂FmH
η
m is not a function of m. This plays a pivotal role in showing

that entropy conserving scheme for vector-kinetic model results in an entropy conserving scheme

for macroscopic model.

Remark 2.1 In the above proof, the three-point entropy equality for macroscopic model (eq. (2.9))

with interface numerical entropy flux ω
(d)⋆

id± 1
2

given by eq. (2.10) is obtained as moment of three-

point entropy equality for vector-kinetic model. Unlike this, we can also obtain eq. (2.9) directly

at the macroscopic level as a consequence of G
(d)⋆

id± 1
2

=
∑M

m=1

(
v
(d)
m Fm

)⋆
id± 1

2

satisfying the entropy

conserving condition for macroscopic model (eq. (2.8)).

The entropy conserving fluxes satisfying eq. (2.40) can be evaluated using an integral along the

path Vid+
1
2
(ξ) = Vi + ξ∆Vid+

1
2
as,

(
v(d)m Fm

)⋆
id± 1

2

=

∫ 1

0

(
v(d)m Fm

) (
Vid+

1
2
(ξ)
)
dξ =

1

2

(
v(d)m Fmi

+ v(d)m Fmid±1

)
− 1

2
Q(d)⋆

m
id±

1
2

[[V]]id± 1
2

(2.50)

where

Q(d)⋆

m
id+

1
2

=

∫ 1

0

(2ξ − 1) ∂V
(
v(d)m Fm

) (
Vid+

1
2
(ξ)
)
dξ (2.51)

Although ∂V

(
v
(d)
m Fm

)(
Vid+

1
2
(ξ)
)
is symmetric positive-definite, the termQ

(d)⋆

m
id+

1
2
is only sym-

metric (need not be positive-definite). This is considered as numerical viscosity coefficient ma-

trix that counterbalances the dispersion from average flux. Integration by parts of Q
(d)⋆

m
id+

1
2

yields,

Q(d)⋆

m
id+

1
2

=

∫ 1

0

(
ξ − ξ2

)
∂VV

(
v(d)m Fm

) (
Vid+

1
2
(ξ)
)
dξ [[V]]id± 1

2
(2.52)

Thus, (
v(d)m Fm

)⋆
id± 1

2

=
1

2

(
v(d)m Fmi

+ v(d)m Fmid±1

)
+O

(∣∣∣[[V]]id+ 1
2

∣∣∣2) (2.53)

and hence for smooth functions, we have

1

∆xd

((
v(d)m Fm

)⋆
id+

1
2

−
(
v(d)m Fm

)⋆
id− 1

2

)
=

1

2∆xd

((
v(d)m Fm

)
id+1

−
(
v(d)m Fm

)
id−1

)
+O

(∣∣∣[[xd]]id+ 1
2

∣∣∣2)
(2.54)

Therefore, the entropy conserving scheme for vector-kinetic model given by eq. (2.50) is second

accurate in space. However, evaluation of a closed form interface flux function using eq. (2.50)

is algebraically tedious for a general hyperbolic system.

The closed form expression can be obtained along the same lines as macroscopic model in

[294]. Let
{
lj
id+

1
2

∈ Rp
}p

j=1
and

{
rj
id+

1
2

∈ Rp
}p

j=1
be two orthogonal sets of vectors such that
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〈
lj
id+

1
2

, rk
id+

1
2

〉
= δjk. Let V

1
id+

1
2

= Vi and

Vj+1

id+
1
2

= Vj

id+
1
2

+
〈
lj
id+

1
2

, [[V]]id+ 1
2

〉
rj
id+

1
2

; j ∈ {1, 2, .., p} (2.55)

Then, we have a path connecting Vi and Vid+1 since

Vp+1

id+
1
2

= V1
id+

1
2
+

p∑
j=1

〈
lj
id+

1
2

, [[V]]id+ 1
2

〉
rj
id+

1
2

= Vi + [[V]]id+ 1
2
= Vid+1 (2.56)

Now, it can be seen that the numerical flux given by,

(
v(d)m Fm

)⋆
id+

1
2

=

p∑
j=1

χ
(d)
m

(
Vj+1

id+
1
2

)
− χ

(d)
m

(
Vj

id+
1
2

)
〈
lj
id+

1
2

, [[V]]id+ 1
2

〉 lj
id+

1
2

(2.57)

satisfies the entropy conserving condition in eq. (2.40). However, for the purpose of numerical

simulations, we use robust entropy conserving fluxes (satisfying eq. (2.40)) that are derived by

defining averages of certain primitive variables and by balancing the coefficients corresponding

to jumps in these primitive variables. These fluxes are described in section 2.8.

Remark 2.2 Higher order entropy conserving (HOEC) fluxes for vector-kinetic model can be

constructed as linear combinations of second order entropy conserving fluxes derived in this

chapter (along the same lines as in [196] for macroscopic model). Since linear combinations

are used, as a consequence of theorem 2.1, the moments of HOEC fluxes for vector-kinetic model

will result in HOEC fluxes for macroscopic model.

Corollary 2.1 If the assumptions stated in theorem 2.1 hold and entropy conserving flux of

the form in eq. (2.50) is used, then

M∑
m=1

Q(d)⋆

m
id±

1
2

= Q
(d)⋆

id± 1
2

(2.58)

Proof: By eqs. (2.43) and (2.50), we obtain

G
(d)⋆

id± 1
2

=
M∑

m=1

(
v(d)m Fm

)⋆
id± 1

2

=
1

2

(
G

(d)
i +G

(d)
id±1

)
− 1

2

M∑
m=1

Q(d)⋆

m
id±

1
2

[[V]]id± 1
2

(2.59)

since
∑M

m=1 v
(d)
m Fmi

= G
(d)
i , ∀i due to the action of moment constraint in eq. (2.27) on Fmi

.
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Further,
M∑

m=1

Q(d)⋆

m
id±

1
2

=

∫ 1

0

(2ξ − 1)
M∑

m=1

∂V
(
v(d)m Fm

) (
Vid+

1
2
(ξ)
)
dξ (2.60)

and

M∑
m=1

∂V
(
v(d)m Fm

) (
Vid+

1
2
(ξ)
)
=

M∑
m=1

v(d)m ∂V
(
amU+ bjmG

j
) (

Vid+
1
2
(ξ)
)
= ∂VG

(d)
(
Vid+

1
2
(ξ)
)

(2.61)

due to the action of moment constraint in eq. (2.27) on ∂VFm. Thus, comparing eqs. (2.12)

and (2.60), we obtain
∑M

m=1 Q
(d)⋆

m
id±

1
2
= Q

(d)⋆

id± 1
2

. 2

2.6 Entropy stable scheme for vector-kinetic model

Consider the three-point semi-discrete conservative scheme on structured grid,

d

dt
Fmi

+
1

∆xd

((
v(d)m Fm

)
id+

1
2

−
(
v(d)m Fm

)
id− 1

2

)
= 0 (2.62)

The interface numerical flux
(
v
(d)
m Fm

)
id± 1

2

is given by,

(
v(d)m Fm

)
id± 1

2

=
(
v(d)m Fm

)⋆
id± 1

2

− 1

2
D(d)

m
id±

1
2

[[∂FmH
η
m]]id± 1

2
(2.63)

Here, D
(d)
m

id±
1
2

= Q
(d)
m

id±
1
2

−Q
(d)⋆

m
id±

1
2

. Q
(d)
m

id±
1
2

and Q
(d)⋆

m
id±

1
2

are the numerical viscosity coefficient

matrices corresponding to entropy stable and entropy conserving schemes respectively. Q
(d)⋆

m
id±

1
2

is given by eq. (2.51).

Then, the inner product of eq. (2.62) with (∂FmH
η
m)i gives the entropy in-equality,

d

dt
Hη

mi
+

1

∆xd

((
v(d)m Hη

m

)
id+

1
2

−
(
v(d)m Hη

m

)
id− 1

2

)
= − 1

4∆xd

(
[[∂FmH

η
m]]id+ 1

2
·D(d)

m
id+

1
2

[[∂FmH
η
m]]id+ 1

2
+ [[∂FmH

η
m]]id− 1

2
·D(d)

m
id−

1
2

[[∂FmH
η
m]]id− 1

2

)
≤ 0

(2.64)

iff D
(d)
m

id±
1
2
is positive-definite. The interface numerical entropy flux

(
v
(d)
m Hη

m

)
id+

1
2

consistent

with eq. (2.38) becomes,

(
v(d)m Hη

m

)
id+

1
2

=
(
v(d)m Hη

m

)⋆
id+

1
2

− 1

4

(
(∂FmH

η
m)i + (∂FmH

η
m)id+1

)
·D(d)

m
id+

1
2

[[∂FmH
η
m]]id+ 1

2
(2.65)
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Further, let us define the interface numerical fluxes for macroscopic model as the moment of

interface numerical fluxes for vector-kinetic model as,

G
(d)

id± 1
2

=
M∑

m=1

(
v(d)m Fm

)
id± 1

2

(2.66)

Theorem 2.2 If the three-point semi-discrete conservative scheme (eq. (2.62)) for vector-kinetic

model with

• Fmi
= amUi + b

(d)
m G

(d)
i , ∀i

• interface numerical fluxes
(
v
(d)
m Fm

)
id± 1

2

satisfying eq. (2.63) and

• constants am, b
(d)
m satisfying the moment constraints in eqs. (2.26) and (2.27) while ren-

dering the positivity of eigenvalues of ∂UFm

is used, and if the convex entropy function corresponding to it is Hη
mi

= amηi+b
(d)
m ω

(d)
i , ∀i, then

1.
∑M

m=1 eq. (2.62) becomes

d

dt
Ui +

1

∆xd

(
G

(d)

id+
1
2

−G
(d)

id− 1
2

)
= 0 (2.67)

with G
(d)

id± 1
2

given by eq. (2.66),

2. the interface numerical flux G
(d)

id± 1
2

given by eq. (2.66) is equal to eq. (2.13), and

3. the three-point entropy in-equality for macroscopic model (eq. (2.14)) holds true with in-

terface numerical entropy flux ω
(d)

id± 1
2

given by eq. (2.15).

Proof: Due to moment constraint in eq. (2.26),
∑M

m=1Fmi
= Ui. Therefore,

∑M
m=1 eq. (2.62)

becomes eq. (2.67) with G
(d)

id± 1
2

given by eq. (2.66), thus proving 1.

Since
(
v
(d)
m Fm

)
id± 1

2

follows eq. (2.63) and [[∂FmH
η
m]]id± 1

2
= [[V]]id± 1

2
= [[∂Uη]]id± 1

2
is not a

function of m (by eq. (2.31)), eq. (2.66) becomes,

G
(d)

id± 1
2

=
M∑

m=1

(
v(d)m Fm

)
id± 1

2

=
M∑

m=1

(
v(d)m Fm

)⋆
id± 1

2

− 1

2

M∑
m=1

D(d)
m

id±
1
2

[[V]]id± 1
2

(2.68)
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By theorem 2.1,
∑M

m=1

(
v
(d)
m Fm

)⋆
id± 1

2

satisfies entropy conserving condition in eq. (2.8) and

hence it is equal to G
(d)⋆

id± 1
2

. We also have
∑M

m=1Q
(d)⋆

m
id±

1
2

= Q
(d)⋆

id± 1
2

by corollary 2.1. Fur-

ther,
∑M

m=1D
(d)
m

id±
1
2
is positive-definite as D

(d)
m

id±
1
2
is positive-definite ∀m. Therefore, D

(d)

id± 1
2

=∑M
m=1 D

(d)
m

id±
1
2
=
∑M

m=1Q
(d)
m

id±
1
2
−Q

(d)⋆

id± 1
2

is positive-definite, and hence

G
(d)

id± 1
2

= G
(d)⋆

id± 1
2

− 1

2
D

(d)

id± 1
2

[[V]]id± 1
2

(2.69)

This proves 2.

Corresponding to the assumptions stated in theorem 2.2, the three-point entropy in-equality

in eq. (2.64) holds true. Since
∑M

m=1(H
η
m)i = ηi, ∀i (due to the action of moment constraint

in eq. (2.26) on (Hη
m)i), [[∂FmH

η
m]]id± 1

2
= [[V]]id± 1

2
= [[∂Uη]]id± 1

2
is not a function of m (by

eq. (2.31)) and
∑M

m=1 D
(d)
m

id+
1
2
= D

(d)

id+
1
2

, moment of eq. (2.64) gives,

d

dt
ηi +

1

∆xd

(
M∑

m=1

(
v(d)m Hη

m

)
id+

1
2

−
M∑

m=1

(
v(d)m Hη

m

)
id− 1

2

)
=

− 1

4∆xd

(
[[V]]id+ 1

2
·D(d)

id+
1
2

[[V]]id+ 1
2
+ [[V]]id− 1

2
·D(d)

id− 1
2

[[V]]id− 1
2

)
(2.70)

Since [[∂FmH
η
m]]id± 1

2
= [[V]]id± 1

2
= [[∂Uη]]id± 1

2
and (∂FmH

η
m)i = Vi = (∂Uη)i are not functions

of m (by eq. (2.31)), moment of eq. (2.65) yields,

M∑
m=1

(
v(d)m Hη

m

)
id+

1
2

=
M∑

m=1

(
v(d)m Hη

m

)⋆
id+

1
2

− 1

4
(Vi +Vid+1) .

M∑
m=1

D(d)
m

id+
1
2

[[V]]id+ 1
2

(2.71)

Since
∑M

m=1

(
v
(d)
m Hη

m

)⋆
id+

1
2

= ω
(d)⋆

id+
1
2

(by theorem 2.1) and
∑M

m=1D
(d)
m

id+
1
2
= D

(d)

id+
1
2

, comparison

of the above equation with eq. (2.15) yields
∑M

m=1

(
v
(d)
m Hη

m

)
id+

1
2

= ω
(d)

id+
1
2

. This proves 3. 2

Thus, an entropy stable scheme for vector-kinetic model results in an entropy stable scheme

for macroscopic model, thanks to eq. (2.31) (resulting from lemma 2.1) that rendered the

linearity of moments in the above proof.

Remark 2.3 In the above proof, the three-point entropy in-equality for macroscopic model

(eq. (2.14)) with interface numerical entropy flux ω
(d)

id± 1
2

given by eq. (2.15) is obtained as mo-

ment of three-point entropy in-equality for vector-kinetic model. Unlike this, we can also obtain

eq. (2.14) directly at the macroscopic level as a consequence of G
(d)

id± 1
2

=
∑M

m=1

(
v
(d)
m Fm

)
id± 1

2

sat-
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isfying the entropy stability condition for macroscopic model
(
eq. (2.13) with positive-definite D

(d)

id± 1
2

)
.

2.6.1 High resolution scheme

Since the interface numerical flux
(
v
(d)
m Fm

)
id+

1
2

contains a term with [[V]]id+ 1
2
which is O (∆xd),

the entropy stable scheme in eq. (2.62) is only first order accurate in space. In order to attain

higher order accuracy in space, the interface numerical flux in eq. (2.63) is modified as,

(
v(d)m Fm

)
id± 1

2

=
(
v(d)m Fm

)⋆
id± 1

2

− 1

2
D(d)

m
id±

1
2

⟨⟨V⟩⟩id± 1
2

(2.72)

where ⟨⟨V⟩⟩id+ 1
2
= V−

id+1 −V+
i . Further, V−

id+1 = Vid+1

(
xd

id+
1
2

)
and V+

i = Vi

(
xd

id+
1
2

)
are

higher order reconstructions of V at interface id+
1
2
. We utilise second order reconstructions in

obtaining the numerical results, and the details are provided therein section 2.8. The moment

of eq. (2.72) becomes,

M∑
m=1

(
v(d)m Fm

)
id± 1

2

= G
(d)⋆

id± 1
2

− 1

2
D

(d)

id± 1
2

⟨⟨V⟩⟩id± 1
2

(2.73)

It can be easily seen that this is a higher order entropy stable flux for macroscopic model, and

it is a consequence of linearity due to eq. (2.31) (resulting from lemma 2.1).

2.7 Time discretisation

Let Fmi
be − 1

∆xd

((
v
(d)
m Fm

)
id+

1
2

−
(
v
(d)
m Fm

)
id− 1

2

)
where

(
v
(d)
m Fm

)
id± 1

2

is entropy conserving( (
v
(d)
m Fm

)⋆
id± 1

2

satisfying eq. (2.40)

)
or entropy stable

( (
v
(d)
m Fm

)
id± 1

2

satisfying eq. (2.63)

)
.

Then, the semi-discrete entropy conserving/stable schemes in eqs. (2.39) and (2.62) can be

represented as,
d

dt
Fmi

= Fmi
(2.74)

Since we utilise second order scheme for entropy conserving/stable spatial discretisations, a third

order scheme is required for the temporal derivative so that the entropy production/dissipation

due to temporal derivative will not affect the entropy conservation/stability achieved spatially.

Hence, the temporal derivative in above equation is discretised using 3-stage third order strong

stability preserving Runge-Kutta method (SSPRK(3, 3)) [281]. After each stage of the RK

method, Ui is evaluated using Ui =
∑M

m=1Fmi
, and this is utilised in the evaluation of fluxes

required for the next stage.
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2.8 Numerical results

In this section, the entropy conserving (EC)/stable (ES) schemes are tested against various

physical problems governed by scalar equations and the system of shallow water equations.

For each problem, the basic ingredients such as problem description, choice of macroscopic

entropy-entropy flux pair, fluxes satisfying entropy conserving/stability conditions in eqs. (2.40)

and (2.63), second order reconstructions of entropy stable fluxes and CFL criteria are provided.

We use the following error quantifications to study the errors in macroscopic and vector-kinetic

entropies at time t.

Signed error =

∑
i

(
(.)ti − (.)t−∆t

i

)
N

(2.75)

Absolute error =

∑
i

∣∣(.)ti − (.)t−∆t
i

∣∣
N

(2.76)

Here, N is the total number of cells or grid points in the computational domain. It can be

seen that the signed error allows for cancellations of positive and negative errors present at

different spatial locations. An equivalent of this with reference as t = 0 instead of t − ∆t is

commonly used in literature in the context of global entropy preservation [258]. However, in

order to understand the actual entropy preservation property of a spatially entropy preserving

scheme, one needs to use the absolute error that does not allow spatial cancellations. Further,

we use the signed error to identify whether the scheme is globally entropy dissipating or not. A

positive signed error indicates global entropy production while negative signed error indicates

global entropy dissipation. We present the numerical solutions, global entropy vs. time, and

error vs. time plots for each problem.

2.8.1 Scalar equations

We consider scalar equations of the form,

∂tU + ∂xd
G(d)(U) = 0 (2.77)

with initial condition U(x1, .., xd, .., xD, 0) = U0(x1, .., xd, .., xD). We choose suitable convex

entropy-entropy flux pair specific to G(d)(U). The constants am, b
(d)
m in eqs. (2.25) and (2.28)

are chosen as described in 2.10. The time step is chosen as

∆t ≤ C
∆x

λ
; ∆x = min (∆xd) (2.78)
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Here, C is the CFL number. The choice of λ is described in 2.10. The flux

(
v(d)m Fm

)⋆
id+

1
2

=
χ
(d)
mid+1 − χ

(d)
mi

Vid+1 − Vi
(2.79)

satisfies the entropy conserving condition in eq. (2.40). This is used when Vid+1 ̸= Vi. When

Vid+1 = Vi, we do not update the flux, as any value of flux satisfies the entropy conserving

condition (eq. (2.40)). Here, the entropy variable is Vi = (∂Uη)i and the vector-kinetic entropy

flux potential is given by χ
(d)
mi = Vi.

(
v
(d)
m Fm

)
i
−
(
v
(d)
m Hη

m

)
i
.

For entropy stable scheme, we use D
(d)
m

id+
1
2
⟨⟨V⟩⟩id+ 1

2
= 1

M
R

(d)

id+
1
2

Λ
(d)

id+
1
2

〈〈
W̃
〉〉

id+
1
2

. For scalar

equations, R
(d)

id+
1
2

= 1 and Λ
(d)

id+
1
2

is the absolute wave speed obtained using the average (arith-

metic) value of U at cells i and id + 1. We use the second order reconstruction of
〈〈

W̃
〉〉

id+
1
2

as explained in section 2.8.2.

2.8.1.1 Linear advection

For the one-dimensional linear advection problem with G(1)(U) = U , we choose η(U) = 1
2
U2,

and correspondingly ω(1)(U) = 1
2
U2 satisfies the compatibility condition in eq. (2.2). The initial

condition is U0 (x1) = (sin(x1))
4. The domain of the problem is [0, 2π), and it is discretised

using 256 uniform cells. Periodic boundary conditions are used here. Numerical solutions are

obtained at T = 2π.

It can be seen from fig. 2.1a that the numerical solution matches well with the exact solution.

Figure 2.1b shows the global entropies over time. It can be seen that the entropies remain

nearly constant. The signed and absolute errors in entropies are shown in figs. 2.1c and 2.1d

respectively. Since we use second order accurate entropy conserving scheme for vector-kinetic

model and ∆x is of O(10−2), we expect an absolute error of O(10−4) in the vector-kinetic

entropies. This is observed in fig. 2.1d. The negative signed errors in fig. 2.1c indicate that

the O(∆x2) error is globally dissipative in nature. Due to the symmetric nature of the periodic

profile, there may be cancellations in errors spatially and we observe a very low signed error of

O(10−12).

In order to study the convergence of the problem, we use very low CFL of C = 0.1. Second

order accuracy of the scheme is evident from the results presented in table 2.2. The exact

solution is used as reference for the convergence study.
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Number of
cells, Nx

∆x1 L2 norm O(L2)

32 0.196349541 0.035757668 -
64 0.09817477 0.00781911 2.19
128 0.049087385 0.00140703 2.47
256 0.024543693 0.000249239 2.50

Table 2.2: EOC for linear advection at T = 2π using EC scheme with C = 0.1

(a) Solutions (b) Entropy functions (c) Signed errors (d) Absolute errors

Figure 2.1: Linear advection at T = 2π using EC scheme with C = 0.1 and Nx = 256

2.8.1.2 Linear rotation

For the two dimensional linear rotation problem, G(1)(U) = −
(
x2 − 1

2

)
U and G(2)(U) =(

x1 − 1
2

)
U . The entropy function is chosen as η(U) = U2, and correspondingly the entropy flux

functions become ω(1)(U) = −
(
x2 − 1

2

)
U2 and ω(2)(U) =

(
x1 − 1

2

)
U2. The initial condition

is shown in fig. 2.2a. The domain of the problem is [−1, 1) × [−0.5, 1.5), and it is discretised

using 256 × 256 uniform cells. The value of U at the boundary is kept fixed throughout the

computation, and a CFL of C = 0.9 is used.

The numerical solution at T = 0.5 is shown in fig. 2.2b. Since ∆x is of O(10−2), one would

expect an error of O(10−4) in the absolute errors due to the usage of second order accurate

entropy conserving scheme. We observe better error of O(10−5) in fig. 2.2e. Further, it is inter-

esting to observe the symmetries in errors of Hη
2 , H

η
4 and Hη

1 , H
η
3 in fig. 2.2d. However, these

symmetries may not be located on the same spatial point. If they were, then the absolute error

of macroscopic entropy η would be much smaller than O(10−7) (due to cancellations) since it

is the sum of vector-kinetic entropies.

2.8.1.3 Non-linear inviscid Burgers’ test

For this non-linear one-dimensional problem with G(1)(U) = 1
2
U2, we choose η(U) = U2, and

correspondingly ω(1)(U) = 2
3
U3 satisfies the compatibility condition in eq. (2.2). The initial

condition is U0 (x1) = sin(2πx1). The domain of the problem is [0, 1), and it is discretised using
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(a) Initial condn. T = 0 (b) Numerical soln. T = 0.5

(c) Entropy functions (d) Signed errors (e) Absolute errors

Figure 2.2: Linear rotation at T = 0.5 using EC scheme with C = 0.9 and Nx,Ny = 256

256 uniform cells. Periodic boundary conditions are used here. We use entropy conserving and

entropy stable schemes respectively for obtaining numerical solutions at T = 0.1
2π

and T = 0.25

in figs. 2.3 and 2.4.

Figures 2.3a and 2.4a show that the numerical solutions match well with the exact solutions.

Figures 2.3b and 2.4b show that macroscopic and vector-kinetic entropy functions are conserved

and dissipated respectively in the smooth (T = 0.1
2π
) and non-smooth (T = 0.25) cases. The

signed and absolute errors for T = 0.1
2π

are shown in figs. 2.3c and 2.3d. Since we use second

order accurate entropy conserving scheme for vector-kinetic model and ∆x is of O(10−3), we

expect an absolute error of O(10−6) in the vector-kinetic entropies. However, we observe an

absolute error of O(10−4) in fig. 2.1d. This might be because the terms multiplying O(∆x2)

in the M-PDE of entropy equality are not O(1) due to non-linearities. The negative signed

errors in fig. 2.1c indicate that the error is globally dissipative in nature. Due to the symmetric

nature of periodic profile, there may be cancellations in errors spatially and we observe a very

low signed error of O(10−13).

Further, the signed and absolute errors for T = 0.25 are shown in figs. 2.4c and 2.4d. Here too,

we observe an absolute error of O(10−4). Negative signed error of O(10−4) indicates entropy

dissipation after the formation of discontinuity.
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(a) Solutions (b) Entropy functions (c) Signed errors (d) Absolute errors

Figure 2.3: Non-linear inviscid Burgers’ test at T = 0.1
2π

using EC scheme with C = 0.1 and
Nx = 256

(a) Solutions (b) Entropy functions (c) Signed errors (d) Absolute errors

Figure 2.4: Non-linear inviscid Burgers’ test at T = 0.25 using first order ES scheme with
C = 0.1 and Nx = 256

In order to study the convergence of the problem, a very low CFL of C = 0.1 is chosen. The

reference solution is the exact solution obtained by employing Newton-Raphson iteration with

tolerance of 10−15. It is seen from table 2.2 that more than second order accuracy is attained

as the grid is refined.

Number of
cells, Nx

∆x1 L2 norm O(L2)

64 0.015625 0.000281831 -
128 0.0078125 0.000118395 1.89
256 0.00390625 4.37E-05 3.24

Table 2.3: EOC for non-linear inviscid Burgers’ test at T = 0.1
2π

using EC scheme with C = 0.1

2.8.2 Shallow water equations

We consider the shallow water equations,

∂t

[
ρ

ρuj

]
+ ∂xd

[
ρud

ρujud + pδdj

]
= 0 ; p = κρ2 ; j ∈ {1, 2, .., D} (2.80)
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with initial condition U(x1, .., xd, .., xD, 0) = U0(x1, .., xd, .., xD). Here, U =

[
ρ

ρuj

]
, G(d) (U) =[

ρud

ρujud + pδdj

]
and κ = 1

2
. The notation h, g with h = ρ, g = 2κ = 1 is commonly used in the

shallow water community. In this case, p = 1
2
gh2.

The entropy function is η (U) = 1
2
ρujuj + κρ2, and correspondingly the entropy flux functions

become ω(d) (U) = ud
(
1
2
ρujuj + 2κρ2

)
. Fm and Hη

m of vector-kinetic model are found using

eq. (2.25) and eq. (2.28) respectively. The constants am, b
(d)
m and λ are chosen as described in

2.10. The time step is chosen as

∆t ≤ C
∆x

λ
; ∆x = min (∆xd) (2.81)

Here, C is the CFL number. Let us construct the entropy conserving flux
(
v
(d)
m Fm

)⋆
id+

1
2

satis-

fying eq. (2.40). Consider the arithmetic average Aid+
1
2
= 1

2
(Ai + Aid+1). This average satisfies

[[AB]]id+ 1
2
= Aid+

1
2
[[B]]id+ 1

2
+ Bid+

1
2
[[A]]id+ 1

2
. Hence, the entropy conserving condition in

eq. (2.40) can be expressed as,

〈[
2κ [[ρ]]id+ 1

2
− ukid+ 1

2
[[uk]]id+ 1

2

[[uj]]id+ 1
2

]
,
(
v(d)m Fm

)⋆
id+

1
2

〉
=

v(d)m

(
2ρid+ 1

2

(
am [[ρ]]id+ 1

2
+ bkmukid+ 1

2
[[ρ]]id+ 1

2

)
+ ρ2id+ 1

2

(
bkm [[uk]]id+ 1

2

))
(2.82)

Equating the terms corresponding to [[ρ]]id+ 1
2
and [[uj]]id+ 1

2
, we obtain

(
v(d)m Fm

)⋆
id+

1
2

=

 v
(d)
m ρid+ 1

2

(
am + bkmukid+ 1

2

)
v
(d)
m

(
ρid+ 1

2
uj id+ 1

2

(
am + bkmukid+ 1

2

)
+ κbjmρ

2
id+

1
2

) (2.83)

This EC flux is second order accurate in space. Let us now derive the entropy stable flux given

by eq. (2.63). We know that
∑M

m=1 D
(d)
m

id+
1
2
= D

(d)

id+
1
2

, a positive-definite matrix. We use the

robust D
(d)

id+
1
2

described in [118]. That is,

D
(d)

id+
1
2

= R
(d)

id+
1
2

Λ
(d)

id+
1
2

R
(d)T

id+
1
2

(2.84)

where R
(d)

id+
1
2

is a suitably scaled matrix whose columns are eigenvectors of ∂UG
(d), and Λ

(d)

id+
1
2

is the Roe-type diffusion matrix (arithmetic averages are used). The matrices R
(d)

id+
1
2

and Λ
(d)

id+
1
2
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for shallow water equations can be found in [117]. Then, we use D
(d)
m

id+
1
2
= 1

M
D

(d)

id+
1
2

, ∀m, and

these are positive-definite.

This results in a first order accurate ES flux. Let us derive the second order accurate ES flux

given by eq. (2.72). As in [118], we express D
(d)

id+
1
2

⟨⟨V⟩⟩id+ 1
2
= R

(d)

id+
1
2

Λ
(d)

id+
1
2

〈〈
W̃
〉〉

id+
1
2

where〈〈
W̃
〉〉

id+
1
2

= B
(d)

id+
1
2

R
(d)T

id+
1
2

[[V]]id+ 1
2
. Here, B

(d)

id+
1
2

is a positive diagonal matrix. Now, consider

the minmod limiter

µ(A,B) =

{
s min(|A|, |B|) if s = sign(A) = sign(B)

0 otherwise
(2.85)

Then, the reconstruction

〈〈
W̃
〉〉

id+
1
2

= R
(d)T

id+
1
2

[[V]]id+ 1
2
− 1

2

(
µ

(
R

(d)T

id+
1
2

[[V]]id+ 1
2
,R

(d)T

id+
1
2

[[V]]i
d+3

2

)
+ µ

(
R

(d)T

id+
1
2

[[V]]id− 1
2
,R

(d)T

id+
1
2

[[V]]id+ 1
2

))
(2.86)

results in a second order accurate ES flux. Since B
(d)

id+
1
2

is a positive diagonal matrix, the sign

property

sign

(〈〈
W̃
〉〉

id+
1
2

)
= sign

(
R

(d)T

id+
1
2

[[V]]id+ 1
2

)
(2.87)

holds true, and the entropy stability is maintained. For vector-kinetic entropy stability, we use

D
(d)
m

id+
1
2
⟨⟨V⟩⟩id+ 1

2
= 1

M
D

(d)

id+
1
2

⟨⟨V⟩⟩id+ 1
2
, ∀m.

It may be noted that we have derived the EC fluxes for vector-kinetic model from the vector-

kinetic framework. Unlike this, we obtained the ES fluxes for vector-kinetic model based on

the diffusion matrices commonly used in literature for macroscopic model. This is because the

only requirement for entropy stability is positive-definiteness of D
(d)
m

id+
1
2
, and we achieve this

simply by employing the robust D
(d)

id+
1
2

used for macroscopic model.

2.8.2.1 1D expansion problem

This test case is taken from [117]. The domain of the problem is [−1, 1), and it is discretised

using 128 uniform cells. The initial condition is,

ρ(x1, 0) = 1, u1(x1, 0) =

{
−4 if x1 < 0

4 if x1 ≥ 0
(2.88)
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(a) ρ (b) ρu1 (c) η

(d) Entropy functions (e) Signed error (f) Absolute error

Figure 2.5: SW 1D expansion problem at T = 0.1 using first order ES scheme with C = 0.1
and Nx = 128

Since the density can become very small, non-robust schemes will crash due to the in-ability

to maintain positivity of density. Both entropy conserving and second order entropy stable

schemes do not maintain the positivity. Hence, we utilise the first order entropy stable flux for

vector-kinetic model to obtain the numerical results at T = 0.1. The boundary values are kept

fixed throughout the computation, and a very low CFL of C = 0.1 is used for robustness.

It can be seen from fig. 2.5a that the density remains non-negative. Further, the numerical

solutions of density, momentum and entropy match well with the exact solution as shown in

figs. 2.5a to 2.5c. Figures 2.5d to 2.5f show entropy functions, their signed and absolute errors

over time (for both macroscopic and vector-kinetic entropies). Since ∆x is of O(10−2), one

would expect an absolute error of O(10−2) due to the usage of first order entropy stable flux. In

fig. 2.5f, we observe a better absolute error of O(10−3) in vector-kinetic entropies. Macroscopic

entropy which is the sum of vector-kinetic entropies has an absolute error of O(10−2). The

negative signed errors in fig. 2.5e indicate the global dissipation of macroscopic and vector-

kinetic entropies. This can also be seen in fig. 2.5d from the decrease in global macroscopic and

vector-kinetic entropies over time. It may be noted that the magnitudes of signed and absolute

errors of all entropies in figs. 2.5e and 2.5f are same. This indicates that the first order entropy

stable fluxes are dissipating the entropies at almost all spatial points, and not just globally.
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2.8.2.2 1D dam break problem

This test case is also from [117]. The domain of the problem is [−1, 1), and it is discretised

using 128 uniform cells. The initial condition is,

ρ(x1, 0) =

{
15 if x1 < 0

1 if x1 ≥ 0
, u1(x1, 0) = 0. (2.89)

The numerical results obtained using first and second order entropy stable schemes at T = 0.15

are shown in figs. 2.6 and 2.7 respectively. The second order entropy stable reconstruction

need not produce monotone solutions near discontinuities. Hence, a minmod flux limiter (that

combines first and second order entropy stable fluxes) is employed to produce monotone solution

near discontinuities. The boundary values are kept fixed throughout the computation, and a

CFL of C = 0.4 is used.

It can be seen that both first and second order (with minmod limiter) schemes capture the

solution profile reasonably well. A positive signed error for Hη
1 in figs. 2.6e and 2.7e indicates

that the numerical diffusion added for the flux corresponding to Hη
1 is not sufficient to account

for the entropy dissipation across discontinuities. This is because we have added equal weights

of robust D
(d)

id+
1
2

to each of the vector-kinetic entropies, irrespective of their entropy dissipation

requirements. Nevertheless, the error in macroscopic entropy which is obtained as the sum of

vector-kinetic entropies is still negative (indicating entropy dissipation).

2.8.2.3 2D periodic flow

This test case is taken from the literature on asymptotic preserving schemes [177]. In order to

be useful in our context, we have taken the value of asymptotic parameter to be 1. The domain

of the problem is [0, 1) × [0, 1), and it is discretised using 256 × 256 uniform cells. The initial

condition shown in fig. 2.8a is given by,

ρ(x1, x2, 0) = 1 + sin2 (2π (x1 + x2)) (2.90)

u1(x1, x2, 0) = u2(x1, x2, 0) = sin (2π (x1 − x2)) (2.91)

The numerical results obtained using entropy conserving scheme at T = 0.1 are shown in

fig. 2.8b. Periodic boundary conditions are employed, and a CFL of C=0.5 is used. It can be

seen from fig. 2.8c that the macroscopic and vector-kinetic entropy functions remain almost

constant over time. From figs. 2.8d and 2.8e, we observe absolute and signed errors of O(10−3)

and O(10−10) respectively. This huge difference implies that there are spatial cancellations

between positive and negative errors. This may be due to the symmetric nature of periodic
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(a) ρ (b) ρu1 (c) η

(d) Entropy functions (e) Signed errors (f) Absolute errors

Figure 2.6: SW 1D dambreak problem at T = 0.15 using first order ES scheme with C = 0.4
and Nx = 128

profile. Nevertheless, there is global dissipation of both macroscopic and vector-kinetic entropies

as indicated by the negative errors in fig. 2.8d. Order of convergence studies show that the

accuracy attained is more than second order, and the results are shown in table 2.4. The

reference solution for convergence studies is the numerical solution with refined grid of 512×512.

N ∆x ||ρ||L2 O(||ρ||) ||ρu1||L2 O(||ρu1||) ||ρu2||L2 O(||ρu2||)
32 0.03125 0.00162 - 0.00255 - 0.00255 -
64 0.015625 0.000378 2.10 0.000362 2.82 0.000362 2.82

128 0.0078125
5.64×
10−5 2.74

5.54×
10−5 2.71

5.54×
10−5 2.71

256 0.00390625
7.62×
10−6 2.89

7.33×
10−6 2.92

7.33×
10−6 2.92

Table 2.4: EOC for 2D periodic flow at T = 0.1 using EC scheme with C = 0.5

2.8.2.4 2D Travelling vortex

This test case is also taken from the literature on asymptotic preserving schemes [177]. We

have taken the value of asymptotic parameter to be 0.8, so that it will be useful in our context.

The domain of the problem is [0, 1)× [0, 1), and it is discretised using 256× 256 uniform cells.
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(a) ρ (b) ρu1 (c) η

(d) Entropy functions (e) Signed errors (f) Absolute errors

Figure 2.7: SW 1D dambreak problem at T = 0.15 using second order ES scheme (using
minmod limiter) with C = 0.4 and Nx = 128

The initial condition shown in fig. 2.9a is given by,

ρ (x1, x2, 0) = 110 +

(
0.64

(
1.5

4π

)2
)
Drc (x1, x2) (k (rc)− k (π)) (2.92)

u1 (x1, x2, 0) = 0.6 + 1.5 (1 + cos (rc (x1, x2)))Drc (x1, x2) (0.5− x2) (2.93)

u2 (x1, x2, 0) = 0 + 1.5 (1 + cos (rc (x1, x2)))Drc (x1, x2) (x1 − 0.5) (2.94)

with

k (q) = 2cos (q) + 2q sin (q) +
1

8
cos (2q) +

1

4
q sin (2q) +

3

4
q2 (2.95)

rc (x1, x2) = 4π
(
(x1 − 0.5)2 + (x2 − 0.5)2

) 1
2 (2.96)

Drc (x1, x2) =

{
1 if rc (x1, x2) < π

0 otherwise
(2.97)

The second order entropy conserving and entropy stable schemes do not distort the structure

of vortex, while the first order entropy stable scheme does. We present the numerical results

obtained using second order entropy conserving scheme at T = 0.1 as shown in fig. 2.9b.

Periodic boundary conditions are employed, and a CFL of C=0.5 is used.
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(a) Density at T = 0
(b) Density contours at T =
0.1

(c) Entropy functions (d) Signed errors (e) Absolute errors

Figure 2.8: SW 2D periodic flow at T = 0.1 using EC scheme with C = 0.5 and Nx,Ny = 256
(Blue, red and green lines are beneath the yellow line)

From fig. 2.9d, we observe that the absolute errors of macroscopic and vector-kinetic entropies

are of O(10−3). On the other hand, the signed errors in Hη
2 and Hη

4 are of O(10−11) (fig. 2.9g),

while those in Hη
1 and Hη

3 are of O(10−5) (fig. 2.9f). Moreover, the signed error profiles of

vector-kinetic entropies are symmetric resulting in a much lower signed error of O(10−14) for η

(not shown in plot). However, these symmetries in signed errors must be located at different

spatial points. If they were located at the same spatial points, then we would observe a much

lower absolute error in macroscopic entropy, unlike O(10−3) in fig. 2.9d.

Order of convergence studies are shown in table 2.5. It is seen that the accuracy attained is

more than second order for ρu1 and ρu2. For ρ, the required order of accuracy is observed in

coarser mesh rather than in fine mesh, and this matches the conclusion made in [263] where the

analyses concerning types of vortices (based on their regularity) and their usage for validation

of orders of accuracy of numerical methods are discussed.
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N ∆x ||ρ||L2 O(||ρ||) ||ρu1||L2 O(||ρu1||) ||ρu2||L2 O(||ρu2||)
32 0.03125 0.000156 - 0.00339 - 0.00709 -

64 0.015625
4.39×
10−5 1.83 0.000505 2.75 0.00105 2.75

128 0.0078125
2.033×
10−5 1.11 0.000105 2.26 0.000174 2.60

Table 2.5: EOC for 2D travelling vortex at T = 0.1 using EC scheme with C = 0.5

(a) Initial condn. T =
0

(b) Numerical soln.
T = 0.1 (c) Entropy functions (d) Absolute errors

(e) Signed errors (f) Hη
1 and Hη

3 (g) Hη
2 and Hη

4

Figure 2.9: SW 2D travelling vortex at T = 0.1 using EC scheme with C = 0.5 and
Nx,Ny = 256

2.8.2.5 2D cylindrical dambreak

This test case is taken from [117]. The domain of the problem is [−1, 1) × [−1, 1), and it is

discretised using 100× 100 uniform cells. The initial condition is given by,

ρ (x1, x2, 0) =

{
2 if (x21 + x22)

1
2 < 0.5

1 otherwise
, u1 (x1, x2, 0) = u2 (x1, x2, 0) = 0 (2.98)

The numerical results of first and second order (with minmod limiter) entropy stable schemes

at T = 0.2 are shown in figs. 2.10a and 2.11a respectively. A CFL of C = 0.4 is used, and

periodic boundary conditions are employed. From figs. 2.10d and 2.11d, we observe that the
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(a) Density at T = 0.2 (b) Entropy functions (c) Signed errors (d) Absolute errors

Figure 2.10: SW 2D cylindrical dam-break at T = 0.2 using first order ES scheme with
C = 0.4 and Nx,Ny = 100

(a) Density at T = 0.2 (b) Entropy functions (c) Signed errors (d) Absolute errors

Figure 2.11: SW 2D cylindrical dambreak at T = 0.2 using second order ES scheme (using
minmod limiter) with C = 0.4 and Nx,Ny = 100

absolute errors in entropies are of O(10−3). Further, from figs. 2.10c and 2.11c, we observe that

the signed errors in entropies are of O(10−4). The negative signed errors indicate that there is

global dissipation of entropy.

2.9 Summary and Conclusions

The following are the major highlights of the chapter.

• We provided a modification to the vector-BGK model, and this allows us to obtain entropy

flux potentials that are required in the consistent definition of interface numerical entropy

fluxes. Lemmas 2.1 and 2.2 are essential in obtaining the entropy flux potentials.

• We showed in theorems 2.1 and 2.2 that the moment of entropy conserving/stable schemes

for vector-kinetic model results in entropy conserving/stable schemes for macroscopic

model. Lemma 2.1 plays a crucial role by rendering the linearities in the involved mo-

ments.

• In the numerical tests of scalar smooth problems, we employed our entropy conserving

scheme and observed that the macroscopic and all the vector-kinetic entropies involved
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are conserved (up to absolute error). We also used signed error to observe global entropy

dissipation/production due to higher order terms for which conservation does not apply.

• For shallow water equations, we derived an entropy conserving flux for vector-kinetic

model by considering arithmetic averages of primitive variables. We used this entropy

conserving scheme on smooth problems such as periodic flow and travelling vortex. In

both cases, we observed the conservation of macroscopic and vector-kinetic entropies.

• We considered the 1D expansion problem where non-positivity of density can easily occur

in non-robust schemes. For this, we employed the first order entropy stable scheme for

vector-kinetic model and observed that the macroscopic and all vector-kinetic entropies

involved are dissipative in nature. We also do not encounter non-positivity.

• In the non-smooth category, we considered scalar non-linear inviscid Burgers’ test, 1D and

2D cylindrical dam-break problems. The second order entropy stable scheme employed

for scalar case dissipates macroscopic and all vector-kinetic entropies. For the shallow

water case, we employed the first and second order entropy stable schemes for vector-

kinetic model. In 1D dam-break problem, we observed that some of the vector-kinetic

entropies are not really dissipative, as their dissipation matrices are not built based on the

dissipation requirements near discontinuities. Further research is required on the choice

of appropriate robust dissipation matrices for vector-kinetic model.

Thus, the entropy preserving scheme developed in this chapter preserves both vector-kinetic

and macroscopic entropy functions. It is interesting to observe that the entropic numerical

solutions of macroscopic model do not experience a notable difference when two different routes

(via vector-kinetic and macroscopic) are taken.

If the proposed entropy conserving scheme for vector-kinetic model is applied to the Euler’s

system, the vector-kinetic entropy conserving condition in eq. (2.40) can be satisfied analogous

to the ways available in literature to satisfy entropy conserving condition for macroscopic model

in eq. (2.8). One can derive the fluxes by utilising an elegant and non-costly route available in

literature (for instance, by defining primitive variables, substituting for entropy variables and

entropy flux potentials in terms of these primitive variables into eq. (2.40), and equating the

coefficients of the jumps in the primitive variables, as introduced in [158] for satisfaction of the

condition in eq. (2.8)), and this is a work in progress. It is expected that the moment of such

entropy conserving flux functions for vector-kinetic model derived using a particular method

(say, [158]) will be an entropy conserving flux function for macroscopic model derived using the

same method ([158]).
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2.10 Appendix: Choice of constants am, b
(d)
m

We know that the moment of eq. (2.24) becomes the given hyperbolic system in eq. (2.1), if

the constants am, b
(d)
m in eq. (2.25) satisfy the moment constraints in eqs. (2.26) and (2.27). We

also know that, if the convex entropy function for vector-kinetic model (eq. (2.28)) is used, then

the moment of eq. (2.30) becomes eq. (2.3) with equality. Further, positivity of eigenvalues of

∂UFm is an important requirement for obtaining the entropy flux potentials and the results of

theorems 2.1 and 2.2. Therefore, in order for the formulation to hold, the constants am, b
(d)
m are

required to satisfy eqs. (2.26) and (2.27) along with the positivity of eigenvalues of ∂UFm.

For one dimensional hyperbolic systems, we consider two discrete velocities, i.e., M = 2. Let

a1 =
1

2
, a2 =

1

2
(2.99)

b
(1)
1 =

1

2λ
, b

(1)
2 = − 1

2λ
(2.100)

If v
(1)
1 = λ and v

(1)
2 = −λ, then the moment constraints in eqs. (2.26) and (2.27) are satisfied.

Further,

eig (∂UF1) = eig

(
1

2
I+

1

2λ
∂UG

(1)

)
(2.101)

eig (∂UF2) = eig

(
1

2
I− 1

2λ
∂UG

(1)

)
(2.102)

Thus, eigenvalues of ∂UFm are 1
2
± 1

2λ
eig
(
∂UG

(1)
)
. Therefore, for positivity, we require λ >

sup
(∣∣eig (∂UG(1)

)∣∣). The supremum is taken over all grid points/cells in the computational

domain.

For two dimensional systems, we consider four discrete velocities, i.e., M = 4. Let

a1 =
1

4
, a2 =

1

4
, a3 =

1

4
, a4 =

1

4
(2.103)

b
(1)
1 =

1

2λ
, b

(1)
2 = 0, b

(1)
3 = − 1

2λ
, b

(1)
4 = 0 (2.104)

b
(2)
1 = 0, b

(2)
2 =

1

2λ
, b

(2)
3 = 0, b

(2)
4 = − 1

2λ
(2.105)

If the following holds,

v
(1)
1 = λ, v

(1)
2 = 0, v

(1)
3 = −λ, v(1)4 = 0 (2.106)

v
(2)
1 = 0, v

(2)
2 = λ, v

(2)
3 = 0, v

(2)
4 = −λ (2.107)
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then the moment constraints in eqs. (2.26) and (2.27) are satisfied. Further,

eig (∂UF1) = eig

(
1

4
I+

1

2λ
∂UG

(1)

)
(2.108)

eig (∂UF2) = eig

(
1

4
I+

1

2λ
∂UG

(2)

)
(2.109)

eig (∂UF3) = eig

(
1

4
I− 1

2λ
∂UG

(1)

)
(2.110)

eig (∂UF4) = eig

(
1

4
I− 1

2λ
∂UG

(2)

)
(2.111)

Thus, eigenvalues of ∂UFm are 1
4
± 1

2λ
eig
(
∂UG

(1)
)
and 1

4
± 1

2λ
eig
(
∂UG

(2)
)
. Therefore, for

positivity, we require λ > 2 sup
(∣∣eig (∂UG(1)

)∣∣ , ∣∣eig (∂UG(2)
)∣∣). The supremum is taken over

all grid points/cells in the domain.
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Chapter 3

High order asymptotic preserving

scheme for diffusive-scaled kinetic

equations

Diffusive scaled linear kinetic equations appear in various applications, and they contain

a small parameter ϵ that forces a severe time step restriction for standard explicit schemes.

Asymptotic preserving (AP) schemes are those schemes that attain asymptotic consistency and

uniform stability for all values of ϵ, with the time step restriction being independent of ϵ. In this

chapter, we develop high order AP scheme for such diffusive scaled kinetic equations with both

well-prepared and non-well-prepared initial conditions by employing IMEX-RK time integrators

such as CK-ARS and A types. This framework is also extended to a different collision model

involving advection-diffusion asymptotics, and the AP property is proved formally. A further

extension of our framework to inflow boundaries has been made, and the AP property is verified.

The temporal and spatial orders of accuracy of our framework are numerically validated in

different regimes of ϵ, for all the models. The qualitative results for diffusion asymptotics, and

equilibrium and non-equilibrium inflow boundaries are also presented.

3.1 Introduction

This chapter is concerned with the numerical approximation of linear collisional kinetic trans-

port equations in a diffusive scaling. Such models are widely used in applications such as

rarefied gas dynamics, neutron transport, and radiative transfer. Due to the presence of a

small parameter ϵ (which is the normalized mean free path of the particles), standard explicit

schemes suffer from a severe restriction on the numerical parameters so that they experience
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extremely high computational cost as ϵ → 0. In the last decades, the so-called Asymptotic-

Preserving (AP) schemes have been proposed to make the numerical passage between the micro

and macro scale [180, 181, 169] possible. Indeed, these AP schemes are uniformly stable (ie the

numerical parameters can be chosen independent of ϵ and degenerate when ϵ→ 0 to a scheme

which is consistent with the asymptotic model. These schemes efficiently deal with multiscale

phenomena and are a viable alternative to domain decomposition approaches.

In this chapter, we are concerned with high order in time AP scheme for collisional kinetic

equations in the diffusive scaling, possibly involving boundary conditions. Several works can

be found in the literature on this topic using splitting method, odd-even or micro-macro de-

compositions (see [172, 167, 169, 180, 181, 182, 182, 222, 96, 37, 189, 192, 200, 198, 240]). Our

work is based on a micro-macro decomposition as introduced in [200] where the unknown f of

the stiff kinetic equation is split into an equilibrium part ρ and a remainder g. A micro-macro

model (equivalent to the original kinetic one) satisfied by ρ and g can be derived. This micro-

macro strategy turns out to be the starting point of several numerical approximation in phase

space (using staggered grid [200], particles method [75, 74, 96], Discontinuous Galerkin method

[165, 241, 242, 240] or low rank approximation [97, 104]). Regarding the time discretization, a

suitable first order semi-implicit time discretization of the micro-macro model has been initially

proposed in [200] for which the AP property is ensured for general initial conditions. High order

extensions are usually based on IMEX Runge-Kutta methods [52, 12, 234, 40, 38, 95] which

turns out to be a useful framework to derive high order AP schemes for stiff kinetic equations

under a fluid scaling [91, 92, 93, 1]. but also under a diffusive scaling [164, 165]; in these works

however, even if the proposed numerical schemes enjoy the AP property and are high order, the

asymptotic diffusion equation is solved explicitly, leading to a stringent parabolic CFL condi-

tion for small ϵ. This drawback is overcome using a suitable modification to the semi-implicit

time discretization of [200] which results in a first order implicit scheme for the asymptotic

diffusion equation that is devoid of the parabolic CFL condition (see [198, 75, 74]). High order

versions have been derived and analyzed in [37, 241, 240, 242], leading to a numerical scheme

which is asymptotically free from the usual restrictive parabolic condition.

In this chapter, a family of high order IMEX numerical schemes is proposed for linear

collisional kinetic equations in the diffusive scaling. According to the collision operator, the

asymptotic model can be a pure diffusion equation or an advection-diffusion equation as in [165].

The numerical schemes presented in this chapter are high order, uniformly stable with respect to

ϵ and degenerate when ϵ→ 0 to a high order implicit scheme for the pure asymptotic diffusion

equation or to a high order IMEX scheme of the asymptotic advection-diffusion equation.

From the first order semi-implicit AP numerical scheme [75], the family of high order schemes
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proposed in this work is obtained using globally stiffly accurate high order IMEX Runge-Kutta

methods, namely type A and type CK [92, 165]. In particular, we discuss the AP property

according to the considered class (type A or CK) and according to the initial condition (well-

prepared or not). For the two cases (diffusion and advection-diffusion), the AP property is

proved with general initial condition (referred as strong AP property in the literature).

This work bears similarities with the series of works [241, 240, 242] in which high order AP

schemes are derived and analyzed for linear collisional kinetic equations in the diffusive scaling.

However, there are some differences. Indeed, in [241, 240], an artificial weighted diffusion is

added and subtracted to get an implicit scheme for the parabolic term, in the spirit of [37];

but, as mentioned in [242], this weighted diffusion term may depend on ϵ and/or the numerical

parameters, and has to be chosen according to the considered problem which can affect the

performance of the numerical simulations. As in [242], the numerical schemes proposed in

this work directly solve the micro-macro system. Another difference lies in the choice of time

integrator (type A, in particular) that allows the scheme to be asymptotic preserving when

the initial data is not well-prepared, without requiring the reduction of initial time steps (the

numerical methods proposed in [241, 242] require the time step to be ∆tp for pth order accurate

scheme in the initial few steps). Further, we consider here advection-diffusion problems and

problems involving incoming boundary conditions; our family of high order scheme can be

easily extended to the half moment micro-macro decomposition introduced in [199] to naturally

incorporate incoming boundary conditions, even when non well prepared boundary conditions

are considered.

Lastly, we address the space discretization in order to get a fully high order solver of the

stiff kinetic equation. Let us mention Discontinuous Galerkin methods developed in [165, 241,

242, 240] for similar purposes. Here we focus on high order classical finite difference methods

for the space approximation which only involve a discrete diffusion term to invert. Staggered

or non-staggered strategies are discussed.

The chapter is organized as follows. First in Section 3.2, the kinetic and asymptotic diffusion

models are introduced. Then in Section 3.3, high order time integrators (using globally stiffly

accurate IMEX Runge-Kutta temporal discretization) are proposed, and their AP property in

the diffusive limit is addressed in Section 3.4. Section 3.5 is devoted to the space approximation.

In Section 3.6, we discuss some extensions to other collision operators and to half moments.

In Section 3.7, numerical results are presented, illustrating high order accuracy and the main

properties of the schemes.
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3.2 Kinetic equation, diffusion limit and micro-macro

decomposition

In this section, we introduce the kinetic model in diffusive scaling, and recall the asymptotic

limit. Then, the micro-macro decomposition is performed to derive the micro-macro model

which serves as a basis for numerical developments.

3.2.1 Linear kinetic equation with diffusive scaling

Let Ω ⊂ Rd be the position space and V ⊆ Rd be the velocity space with measure dµ(v). We

consider the linear kinetic equation with diffusive scaling,

∂tf +
1

ϵ
v · ∇xf =

1

ϵ2
Lf, (t, x, v) ∈ R+ × Ω× V (3.1)

where f(t, x, v) ∈ R is the distribution function (depending on time t ∈ R+, space x ∈ Ω ⊂ Rd

and velocity v ∈ V ⊂ Rd) and ϵ > 0 measures the dimensionless mean free path of particles or

the inverse of relaxation time. We consider the initial condition,

f(0, x, v) = f init(x, v), (x, v) ∈ Ω× V (3.2)

and boundary conditions are imposed in space. In this work, we will consider periodic boundary

conditions or inflow boundary conditions. The linear collision operator L in eq. (3.1) acts only

on the velocity dependence of f , and it relaxes the particles to an equilibrium M(v) which is

positive and even. We denote for all velocity dependent distribution functions h,

⟨h⟩V =

∫
V
h(v) dµ∫

V
M(v) dµ

. (3.3)

In particular, we obtain ⟨M⟩V = 1 and ⟨vM⟩V = 0. Further, the operator L is non-positive

and self-adjoint in L2 (V,M−1dµ), with the following null space and range:

N(L) = {f : f ∈ Span (M)}, R(L) = (N(L))⊥ = {f : ⟨f⟩V = 0}. (3.4)

Therefore, L is invertible on R(L) and we denote its pseudo-inverse by L−1.

3.2.2 Diffusion limit

In the limit ϵ → 0, it is seen from eq. (3.1) that f → f0 where f0 belongs to N(L). Thus,

f0 = ρ(t, x)M where f0 solves Lf0 = 0 and where the limiting density ρ is the solution of the
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asymptotic diffusion equation. To derive the diffusion equation, a Chapman-Enskog expansion

has to be performed to get f = f0 + ϵL−1(vM) · ∇xρ + O(ϵ2). Integrating with respect to the

velocity variable enables to get the diffusion limit

∂tρ−∇x · (κ∇xρ) = 0 with κ = −
〈
v ⊗ L−1(vM)

〉
V
> 0. (3.5)

3.2.3 Micro-macro decomposition

In this part, we derive a micro-macro model which is equivalent to (3.1), and this is the model

that will be discretized in the next sections. First, we consider the standard micro-macro

decomposition of the unknown f [200, 198],

f = ρM + g, with ρ(t, x) = ⟨f⟩V and ⟨g⟩V = 0. (3.6)

We introduce the orthogonal projector Π in L2 (V,M−1dµ) onto N(L): Πh = ⟨h⟩V M , which will

be useful to derive the micro-macro model. Substituting eq. (3.6) into eq. (3.1) and applying

successively Π and (I − Π) enables to get the micro-macro model satisfied by (ρ, g)

∂tρ+
1

ϵ
∇x · ⟨vg⟩V = 0, (3.7)

∂tg +
1

ϵ
(I − Π) (v · ∇xg) +

1

ϵ
vM · ∇xρ =

1

ϵ2
Lg. (3.8)

Initial conditions for macro and micro equations become

ρ(0, x) = ρinit(x) =
〈
f init(x, ·)

〉
V
, (3.9)

g(0, x, v) = ginit(x, v) = f init(x, v)− ρinit(x)M(v), (3.10)

whereas the boundary conditions for ρ and g become periodic if f is periodic. From the micro

part (3.8), a Chapman-Enskog expansion of g can be performed to get

g = −ϵ
(
ϵ2∂t − L

)−1
(
(I − Π) (v · ∇xg) + vM · ∇xρ

)
= ϵL−1(vM) · ∇xρ+ O(ϵ2),

under some suitable smoothness assumptions. Inserting this expression in eq. (3.7) leads to

eq. (3.5) in the limit ϵ→ 0.
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3.3 Time integrators

In this part, we present the family of high order time integrators for the micro-macro model

(3.7)-(3.8). We will keep the phase space variables continuous to ease the reading. We first

recall the first order temporal scheme which leads to the implicit treatment of the asymptotic

diffusion model before introducing the high order version.

3.3.1 First order accurate time integrator

Given ρn, gn that approximate ρ, g at time t = n∆t, we obtain the solution ρn+1, gn+1 from the

following time integration of eqs. (3.7) and (3.8) respectively. We use the following first order

implicit-explicit (IMEX) strategy to attain the asymptotic preserving property

ρn+1 = ρn − ∆t

ϵ
∇x ·

〈
vgn+1

〉
V
, (3.11)

gn+1 = gn − ∆t

ϵ
(I − Π) (v · ∇xg

n)− ∆t

ϵ
vM · ∇xρ

n+1 +
∆t

ϵ2
Lgn+1. (3.12)

The implicit treatment of density gradient in micro equation (3.12) and fully implicit treatment

of the macro equation enables us to get an implicit scheme for diffusion equation in the limit

ϵ→ 0.

Although the macro equation is treated in a fully implicit manner, ρn+1 and gn+1 can be updated

using eqs. (3.11) and (3.12) in an explicit manner. From eq. (3.12), we get

gn+1 =
(
ϵ2I −∆tL

)−1 (
ϵ2gn − ϵ∆t (I − Π) (v · ∇xg

n)− ϵ∆tvM · ∇xρ
n+1
)
. (3.13)

Inserting this in eq. (3.11), we obtain the following implicit scheme for the macro unknown

ρn+1=ρn −∆t∇x · ⟨v
(
ϵ2I −∆tL

)−1(
ϵgn−∆t (I − Π) (v · ∇xg

n)−∆tvM ·∇xρ
n+1
)
⟩V,

or, expressing ρn+1 as quantities at iteration n

ρn+1 =
(
I −∆t2∇x · (Dϵ,∆t∇x)

)−1
(
ρn−∆t∇x·

〈
v
(
ϵ2I −∆tL

)−1
(ϵgn −∆t (I − Π) (v ·∇xg

n))

〉
V

)

with Dϵ,∆t = ⟨v⊗ (ϵ2I −∆tL)
−1

(vM)⟩V . Thanks to this time integrator, ρn+1 can be updated

by inverting a diffusion type operator. Following this, gn+1 can be found explicitly from the

knowledge of ρn+1. This first order scheme introduced in [198, 75] is the basis of the high order

scheme presented below.
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3.3.2 High order accurate time integrators

Following previous works [92, 165, 37, 241], we will consider globally stiffly accurate (GSA)

IMEX Runge-Kutta (RK) schemes to construct high order time integrators for the micro-

macro model eqs. (3.7) and (3.8). An IMEX RK scheme is represented using the double

Butcher tableau [52, 12]

c̃ Ã

b̃T

c A

bT
(3.14)

where Ã = (ãij) and A = (aij) are s×s matrices which correspond to the explicit and implicit

parts of the scheme (A and Ã respectively are lower triangular and strictly lower triangular

matrices). The coefficients c̃ and c are given by c̃i =
∑i−1

j=1 ãij, ci =
∑i

j=1 aij, and the vectors

b̃ = (b̃j) and b = (bj) give quadrature weights that combine the stages. For GSA IMEX RK

scheme, we have

cs = c̃s = 1 and asj = bj, ãsj = b̃j, ∀j ∈ {1, 2.., s}. (3.15)

An IMEX RK method is type A if the matrix A is invertible, and it is type CK if the first row

of matrix A has zero entries and the square sub-matrix formed by excluding the first column

and row of A is invertible. In the special case where the first column of A has zero entries, the

scheme is said to be of type CK-ARS. The reader is referred to [92] for more details. In this

work, we employ both type A and CK-ARS schemes.

The first order GSA IMEX RK scheme employed in eqs. (3.11) and (3.12) follows the type

CK-ARS double Butcher tableau (known as ARS(1, 1, 1)),

0 0 0

1 1 0

1 0

0 0 0

1 0 1

0 1

(3.16)

We now use the general IMEX RK scheme from (3.14) with GSA property eq. (3.15) for obtain-

ing high order accurate time integration of macro and micro eqs. (3.7) and (3.8) respectively.

We introduce the following notations in the presentation of our scheme.

Th(k) = (I − Π)
(
v · ∇xh

(k)
)
, (3.17)

D
(j)
ϵ,∆t =

〈
v ⊗

(
ϵ2I − ajj∆tL

)−1
(vM)

〉
V
, (3.18)

I
(j)
ϵ,∆t =

(
ϵ2I − ajj∆tL

)−1
. (3.19)
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We will construct high order IMEX RK schemes following the first order guidelines (fully im-

plicit treatment of macro equation, implicit treatment of density gradient and relaxation terms

and explicit treatment of transport term in micro equation). Given ρn, gn that approximate

ρ, g at time t = n∆t, we obtain the internal RK stage values ρ(j) and g(j), j = 1, . . . , s as

ρ(j) = ρn −
j∑

k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V
, (3.20)

g(j) = gn −
j−1∑
k=1

ãjk
∆t

ϵ
Tg(k) −

j∑
k=1

ajk
∆t

ϵ
vM · ∇xρ

(k) +

j∑
k=1

ajk
∆t

ϵ2
Lg(k), (3.21)

where, as usual, the summation
∑j−1

k=1 in the explicit term is zero for j = 1.

Although the expressions above are implicit, the stage values ρ(1), g(1) can be found in an explicit

manner by using the known quantities ρn, gn, and the stage values ρ(j), g(j), ∀j ∈ {2, 3, . . . , s}
can be found explicitly from ρn, gn and the previous stage values ρ(l), g(l), ∀l ∈ {1, 2, . . . , j−1}.
Indeed, proceeding similarly as for the first order scheme, we get the following expression of

g(j), j = 1, . . . , s from eq. (3.21),

g(j) = I
(j)
ϵ,∆t

(
ϵ2gn − ϵ

j−1∑
k=1

ãjk∆tTg
(k) − ϵ

j∑
k=1

ajk∆tvM · ∇xρ
(k) +

j−1∑
k=1

ajk∆tLg
(k)

)
. (3.22)

Further, we write eq. (3.20) by splitting the summation on k as

ρ(j) = ρn −
j−1∑
k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V
− ajj

∆t

ϵ
∇x ·

〈
vg(j)

〉
V
,

and inserting eq. (3.22) in the last term leads to the update of ρ(j) for j = 1, . . . , s

ρ(j) =
(
I − a2jj∆t

2∇x ·
(
D

(j)
ϵ,∆t∇x

))−1
(
ρn −

j−1∑
k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V

(3.23)

−ajj∆t∇x ·
〈
vI

(j)
ϵ,∆t

(
ϵgn −

j−1∑
k=1

ãjk∆tTg
(k)

−
j−1∑
k=1

ajk∆tvM · ∇xρ
(k) +

1

ϵ

j−1∑
k=1

ajk∆tLg
(k)
)〉

V

)
,

where the definition of T,D
(j)
ϵ,∆t and I

(j)
ϵ,∆t are given by eqs. (3.17) to (3.19). After this reformula-

tion, ρ(j) can be computed from (3.23) by inverting a linear elliptic type problem and following
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this, g(j) can be found from eq. (3.22). The GSA property in eq. (3.15) guarantees that the

solution at tn+1 = (n + 1)∆t is same as the last RK stage values, that is, ρn+1 = ρ(s) and

gn+1 = g(s).

Remark 3.1 The IMEX strategy is similar to the one presented in [242] where the Schur

complement is employed to make the scheme efficient from a computational point of view. Here,

inserting g(j) in the update (3.23) of ρ(j) leads to a similar scheme.

However, we present here the asymptotic preserving properties of both CK-ARS and type A time

integrators and show that the type A time integators require neither well-prepared initial data

nor the treatment of reducing initial time steps as in [242].

3.4 Asymptotic preserving property

In this section, we show that the time integrated scheme (3.23)-(3.22) becomes a consistent

scheme for the diffusion equation (3.5) in the limit ϵ → 0. We will discuss the asymptotic

preserving property for both CK-ARS and type A time integrators. First, we recall the definition

of well-prepared initial data in our context.

Definition 3.1 (Well-prepared initial data)The initial data ρ(0, x) and g(0, x, v) in eqs. (3.9)

and (3.10) are said to be well-prepared if g(0, x, v) = O(ϵ).

Lemma 3.1 Assume that ϵ is sufficiently small. Let ãjk and ajk be the coefficients of the RK

method (3.14) applied to the scheme (3.20)-(3.21). Then, the following holds:

1. CK-ARS case: If gn = O(ϵ), then g(1) = gn = O(ϵ) and

g(j) = ϵL−1(vM) · ∇xρ
(j) +O (ϵ2) , ∀j ∈ {2, . . . , s}.

2. Type A case: g(j) = ϵL−1(vM) · ∇xρ
(j) +O (ϵ2) , ∀j ∈ {1, . . . , s}.

Proof: Let j ∈ {1, . . . , s} such that ajj ̸= 0. Observe that the operator I
(j)
ϵ,∆t defined in (3.19)

admits, for small ϵ, the following expansion:

I
(j)
ϵ,∆t = −(ajj∆tL)

−1 +O(ϵ2). (3.24)

Consider now an A-type time integrator, so with ajj ̸= 0 for any j ∈ {1, . . . , s}, and assume

gn = O(1). From (3.22) and the previous expansion, we obtain

g(1) = −(a11∆tL)
−1
[
−ϵa11∆tvM · ∇xρ

(1)
]
+O(ϵ2) = ϵL−1(vM) · ∇xρ

(1) +O(ϵ2).
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Now, the proof is performed by induction on j ∈ {2, . . . , s} assuming that for any k ∈ {1, . . . , j−
1}, g(k) = ϵL−1(vM) · ∇xρ

(k) + O(ϵ2). In particular g(k) = O(ϵ) and the formula (3.22) has

therefore the following expansion:

g(j) = −(ajj∆tL)
−1

[
O(ϵ2)− ϵ

j∑
k=1

ajk∆tvM · ∇xρ
(k) +

j−1∑
k=1

ajk∆tLg
(k)

]
+O(ϵ2).

Inserting the induction hypothesis in the last sum, most of the terms in the two sums eliminate

so that finally g(j) = ϵL−1(vM) · ∇xρ
(j) +O(ϵ2).

The case of a CK-ARS time integrator is slightly different. First a11 = 0 so that g(1) = gn =

O(ϵ) by the particular well-prepared assumption. Now a22 ̸= 0 and (3.22) has the following

expansion for j = 2:

g(2)=−(a22∆tL)
−1
[
O(ϵ2)−ϵa22∆tvM · ∇xρ

(2)
]
+O(ϵ2)=ϵL−1(vM)·∇xρ

(2) +O(ϵ2).

Again, the proof is by induction on j ∈ {3, . . . , s} assuming for any k ∈ {2, . . . , j − 1}, g(k) =
ϵL−1(vM) · ∇xρ

(k) +O(ϵ2). The same computation as above is available since g(1) = O(ϵ). One

has (note that aj1 = 0 for any j so that the sums start at k = 2):

g(j) = −(ajj∆tL)
−1

[
O(ϵ2)− ϵ

j∑
k=2

ajk∆tvM · ∇xρ
(k) +

j−1∑
k=2

ajk∆tLg
(k)

]
+O(ϵ2)

= ϵL−1(vM) · ∇xρ
(j) +O(ϵ2).

2

Due to the GSA property of both time integrators, we have gn+1 = g(s) = ϵL−1(vM) ·
∇xρ

(s) + O (ϵ2) = ϵL−1(vM) · ∇xρ
n+1 + O (ϵ2) for sufficiently small ϵ. Thus, the following are

evident from Lemma 3.1:

1. For type CK-ARS, if the initial data is well-prepared (that is, g0 = O(ϵ)), then gn =

O(ϵ), ∀n > 0.

2. For type A, if the initial data is such that g0 = O(1), then gn = O(ϵ), ∀n > 0.

As observed in [92], the initial data does not need to be well-prepared for type A time integrator,

unlike type CK-ARS, to ensure AP property.

Theorem 3.1Consider the scheme (3.20)-(3.21) approximating the macro-micro model (3.7)-

(3.8), with the RK method (3.14) of type A or of type CK-ARS (with well-prepared initial data
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g0 = O(ϵ)). Then in the limit ϵ → 0, the scheme (3.20)-(3.21) degenerates to the following

scheme for the diffusion equation

ρ(j) = ρn +

j∑
k=1

ajk∆t∇x ·
(
κ∇xρ

(k)
)
, ∀j = 1, . . . , s, κ=−

〈
v ⊗ L−1(vM)

〉
V
. (3.25)

Proof: Corresponding to each case (CK-ARS or type A), we have the following:

Type CK-ARS Assumptions in criterion 1 of Lemma 3.1 are satisfied, and its implications

can be utilised. Hence, inserting g(ℓ) = ϵL−1(vM) · ∇xρ
(ℓ) + O(ϵ2), ∀ℓ ∈ {2, 3, .., s} into

eq. (3.20), we get (recall that aj1 = 0)

ρ(j) = ρn − ∆t

ϵ

j∑
k=2

ajk∇x ·
〈
vϵL−1(vM) · ∇xρ

(k)
〉
V
+O(ϵ),

= ρn −∆t

j∑
k=2

ajk∇x ·
(〈
v ⊗ L−1(vM)

〉
V
∇xρ

(k)
)
+O(ϵ).

Type A Assumptions in criterion 2 of Lemma 3.1 are satisfied, and its implications can be

utilised. Hence, inserting g(ℓ) = ϵL−1(vM) ·∇xρ
(ℓ)+O(ϵ2), ∀ℓ ∈ {1, 2, .., s} into eq. (3.20),

we get the required result by following the same simplification as before. The only differ-

ence is that here
∑j

k=1 instead of
∑j

k=2.

2

Remark 3.2 For type CK-ARS, if the initial data is not well-prepared, computing g(2) from

(3.21) involves ϵ ã21
a22
L−1(I − Π)(v · ∇xg

(1)) which is not of O(ϵ2). Thus,

g(2) = ϵ
ã21
a22

L−1(I − Π)(v · ∇xg
(1)) + ϵL−1(vM) · ∇xρ

(2) +O
(
ϵ2
)
,

and inserting in the macro equation eq. (3.20) for j = 2 leads to (since a21 = 0)

ρ(2) = ρn− ã21
a22

∆t
〈
v ⊗ L−1

(
(I − Π)v∇2

xg
(1)
)〉

V
−a22∆t∇x·

(〈
v ⊗ L−1(vM)

〉
V
∇xρ

(2)
)
+O(ϵ),

which is not consistent with the diffusion equation. Thus, for CK-ARS, asymptotic consistency

cannot be attained if the initial data is not well-prepared.
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3.5 Space and velocity discretization

In this section, we present the spatial (for both non-staggered and staggered grids) and velocity

discretization strategies that we employ in our numerical scheme.

3.5.1 Discrete velocity method

For the velocity discretization, we will follow the discrete velocity method [170]. Thus, the

velocity domain is truncated as v ∈ [−vmax, vmax], and a uniform mesh is used vk = −vmax+k∆v,

k = 1, . . . , Nv(Nv ∈ N⋆) and ∆v = 2vmax/Nv. Further, f(t, x, v) and M(v) are represented as:

fk(t, x) := f(t, x, vk), Mk :=M(vk) for k = 1, . . . , Nv.

Then, according to the definitions (3.3) and (3.6), we have for j = 1, . . . , Nv

ρ(t, x) ≈
∑Nv−1

k=0 fk∆v∑Nv−1
k=0 Mk∆v

and (Πf(t, x, v))j ≈
∑Nv−1

k=0 fk∆v∑Nv−1
k=0 Mk∆v

Mj.

For the presentation, we will keep velocity continuous to focus on space discretization.

3.5.2 Space discretization using staggered grid

First, we will consider staggered grid to approximate g(j) and ρ(j) in space following [200]:

the two meshes of the space interval [0, 1] are xi = i∆x and xi+1/2 = (i + 1/2)∆x for i =

0, . . . , Nx(Nx ∈ N⋆), with ∆x = L/Nx. Periodic boundary conditions will be considered in this

section.

The expressions for g(j) and ρ(j) in (3.22)-(3.23) are spatially discretised by considering

staggered grid: ρ(j) is stored at xi (ρ
(j)
i ≈ ρ(j)(xi)), and g(j) is stored at xi+1/2 (g

(j)
i+1/2(v) ≈

g(j)(xi+1/2, v)). The term v · ∇xg
(k) in (3.22) and (3.23) is discretised in an upwind fashion as

v · ∇x ≈ v+ ·G−
upw + v− ·G+

upw where v± = (v ± |v|)/2, G±
upw denote the Nx ×Nx matrices that

approximate ∇x. For instance, the first order version is

G−
upw =

1

∆x
circ([−1, 1]), G+

upw =
1

∆x
circ([−1, 1]), (3.26)

where the notation circ is defined in section 3.8. With these notations, we get

(
v∂xg

(j)
)
xi+1/2

≈ v+
g
(j)

i+ 1
2

− g
(j)

i− 1
2

∆x
+ v−

g
(j)

i+ 3
2

− g
(j)

i+ 1
2

∆x
=
((
v+G−

upw + v−G+
upw

)
g(j)
)
i
,

where in the last term, the i index has to be understood as the i-th component of the vector.
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Instead of first order upwind discretization, one can also use high order upwind discretizations

so that the matrices G±
upw will be different. Further, the term vM · ∇xρ

(k) in (3.22)-(3.23) and

the terms of the form ∇x · ⟨(·)⟩V in (3.23) are discretised using second order central differences

as in [200]. In particular, the term vM · ∇xρ
(k) is approximated by

(
vM∂xρ

(k)
)
xi+1/2

≈ vM
ρ
(k)
i+1−ρ

(k)
i

∆x
=
(
vMGcengρ

(k)
)
i
, Gceng=

1

∆x
circ([−1, 1]). (3.27)

Finally, the gradient terms ∇x · ⟨(·)⟩V in (3.23) are approximated as follows

(∂x ⟨·⟩V )xi
=
(⟨·⟩V )i+1/2 − (⟨·⟩V )i−1/2

∆x
=
(
Gcenρ ⟨·⟩V

)
i
,Gcenρ=

1

∆x
circ([−1, 1]). (3.28)

Again, high order centered finite differences methods can be used so that it will give different

expressions for Gcenρ and Gceng . Let us remark that the term ∇x · ∇x = ∇2
x in (3.23) is ap-

proximated by GcenρGceng , ie GcenρGceng =
1

∆x2 circ([1,−2, 1]), which gives the standard second

order approximation of the Laplacian.

To ease the reading, we present the fully discrete scheme for first order ARS(1, 1, 1) but the

generalization to high order can be done using the elements of Section 3.3

gn+1=
(
ϵ2I −∆tL

)−1(
ϵ2gn−ϵ∆t (I − Π)

(
v+G−

upw+v
−G+

upw

)
gn−ϵ∆tvMGcengρ

n+1
)

ρn+1 =
(
I −∆t2Gcenρ

(〈
v ⊗

(
ϵ2I −∆tL

)−1
(vM)

〉
V
Gceng

))−1

×(
ρn−∆tGcenρ

〈
v
(
ϵ2I −∆tL

)−1(
ϵgn−∆t (I − Π)

((
v+G−

upw+v
−G+

upw

)
gn
))〉

V

)
.

3.5.3 Space discretization using non-staggered grid

We also address the case of non-staggered grids which may be more appropriate when high

dimensions are considered in space since only one spatial mesh is used: xi = i∆x, for i =

0, 1, .., Nx, with ∆x = L/Nx. Let g
(j) and ρ(j) in (3.22)-(3.23) ∀j ∈ {1, 2, .., s} be approximated

in space by g
(j)
i (v) ≈ g(j)(xi, v) and ρ

(j)
i ≈ ρ(j)(xi). The term v · ∇xg

(k) in (3.22)-(3.23) is

discretised in an upwind fashion as v · ∇x = v+G−
upw + v−G+

upw, where v
± = (v ± |v|)/2. Here,

G±
upw denote the matrices that represent an upwind approximation of ∇x. For instance, the

definition (3.26) can be used, but also its third order version

G−
upw =

1

6∆x
circ([1,−6, 3, 2]), G+

upw =
1

6∆x
circ([−2,−3, 6,−1]), (3.29)
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where circ represents the matrix notation described in section 3.8 can be used. The term

vM · ∇xρ
(k) in (3.22)-(3.23) and the terms of the form ∇x · ⟨(·)⟩V in (3.23) are discretised in

central fashion, since these terms act as source in eq. (3.22) and diffusion in (3.23). Here, ∇x

is approximated by central differences as in (3.28) or (3.27) but in the non-staggered case, the

same matrix can be used for both terms. As an example, the fourth order central difference

produces:

Gcen =
1

12∆x
circ([1,−8, 0, 8,−1]). (3.30)

The term ∇x · ∇x = ∇2
x in (3.23) is discretised as the matrices product G2

cen = GcenGcen. Like

in the staggered grid case, we present the fully discrete scheme for first order ARS(1, 1, 1) time

discretization to ease the reading:

gn+1=
(
ϵ2I −∆tL

)−1(
ϵ2gn−ϵ∆t (I − Π)

(
v+G−

upw + v−G+
upw

)
gn−ϵ∆tvMGcenρ

n+1
)

ρn+1 =
(
I −∆t2Gcen

(〈
v ⊗

(
ϵ2I −∆tL

)−1
(vM)

〉
V
Gcen

))−1

×(
ρn −∆tGcen

〈
v
(
ϵ2I −∆tL

)−1 (
ϵgn −∆t (I − Π)

((
v+G−

upw + v−G+
upw

)
gn
))〉

V

)
Remark 3.3 We know that the term

∑j
k=1 ajk

∆t
ϵ
∇x ·

〈
vg(k)

〉
V
in (3.20) is split into first j − 1

and last j contributions, and g(j) is substituted for the last j contribution, as in (3.23). The

gradient in
∑j−1

k=1 ajk
∆t
ϵ
∇x·
〈
vg(k)

〉
V
of (3.23) is discretised using Gcenρ. Further, the substitution

of g(j) for the last j hints the combination of ∇x · ∇x as ∇2
x for the terms of g(j) involving ∇xg

and ∇xρ. However, if we choose a spatial discretization for ∇2
x as Gdiff, then these terms will

experience GcenρGceng for the first j−1 contributions and Gdiff for the last j contribution of the

ρ(j) update equation. This disrupts the ODE structure present in RK time discretization, and

hence reduction to first order time accuracy was observed numerically. Therefore, in order to

retain high order time accuracy, it is important to carry out the space discretization carefully.

Hence, we do not introduce a different discretization for ∇2
x, and we retain GcenρGceng even for

the last j contribution of ρ(j) equation.

Remark 3.4 The matrices introduced for spatial discretization do not change the Chapman-

Enskog expansion so that the AP property is still true in the fully discrete form. Thus, we

have g(k) = ϵL−1(vM)Gcengρ
(k) + O(ϵ2) for k ∈ {1, . . . , s} by using type A. For CK-ARS with

well-prepared data, we have g(k) = ϵL−1(vM)Gcengρ
(k)+O(ϵ2) for k ∈ {2, . . . , s}. Inserting this

in macro equation, we get the corresponding RK scheme for the diffusion

ρ(j) = ρn −∆t

j∑
k=1

ajkGcenρ

(〈
v ⊗ L−1(vM)

〉
V
Gcengρ

(k)
)
+O(ϵ).
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3.6 Extensions to advection-diffusion collision operator

and inflow boundary problems

In this section, we show that our high order AP schemes can be extended to other problems

involving advection-diffusion asymptotics and inflow boundaries.

3.6.1 Advection-diffusion asymptotics

In this part, an advection-diffusion collision operator is considered (see [171, 165]),

Lf := Lf + ϵvM · A ⟨f⟩V , A ∈ Rd, |ϵA| < 1, (3.31)

where L denotes a collision satisfying the properties listed in Section 3.2. A famous simple

example is Lf = ⟨f⟩V M − f .

Using the notations introduced in Section 3.2, we can derive the micro-macro model satisfied

by ρ = ⟨f⟩V and g = f − ρM by applying Π and I − Π to eq. (3.1) with collision L to get the

macro and micro equations in this context

∂tρ+
1

ϵ
∇x · ⟨vg⟩V = 0, (3.32)

∂tg +
1

ϵ
(I − Π) (v · ∇xg) +

1

ϵ
vM · ∇xρ =

1

ϵ2
Lg +

1

ϵ
vM · Aρ. (3.33)

A Chapman-Enskog expansion can be performed to get g = ϵL−1(vM) · ∇xρ − ϵL−1(vM) ·
Aρ+O(ϵ2). Inserting this in the macro equation (3.32) enables to obtain an advection-diffusion

equation in the limit ϵ→ 0:

∂tρ+∇x ·
(〈
v ⊗ L−1(vM)

〉
V
∇xρ

)
−∇x ·

(〈
v ⊗ L−1(vM)

〉
V
Aρ
)
= 0. (3.34)

The goal is to design a uniformly stable high order time integrators for (3.32)-(3.33) so that

they degenerate into a high order time integrator for (3.34) as ϵ → 0. The extension of the

schemes introduced in Section 3.3 will lead to an IMEX discretization of the asymptotic model

(3.34), where the advection term is treated explicitly while the diffusion term is implicit.

3.6.1.1 High order time integrator

In this subsection, we present the discretization of macro and micro equations (3.32)-(3.33). As

in Section 3.3, in the micro equation, we treat 1
ϵ2
Lg implicitly to ensure uniform stability and

the additional term 1
ϵ
vM · Aρ explicitly since it will be stabilized by the implicit treatment of

the stiffest term. Regarding the macro equation and the remaining terms in micro equation,
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we follow the lines from previous Section 3.3. We thus obtain the following high order IMEX

RK scheme to approximate (3.32)-(3.33)

ρ(j) = ρn −
j∑

k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V
, (3.35)

g(j)=gn−∆t

ϵ

[ j−1∑
k=1

ãjkTg
(k)+

j∑
k=1

ajkvM·∇xρ
(k)−

j∑
k=1

ajk
ϵ
Lg(k)−

j−1∑
k=1

ãjkvM·Aρ(k)
]
, (3.36)

where the coefficients ajk, ãjk are given by the Butcher tableaux. As in Section 3.3, some

calculations are required to make the algorithm explicit. First, we have

g(j)= I
(j)
ϵ,∆t

(
ϵ2gn−ϵ∆t

[ j−1∑
k=1

ãjkTg
(k)+

j∑
k=1

ajkvM · ∇xρ
(k) −1

ϵ

j−1∑
k=1

ajkLg
(k)−

j−1∑
k=1

ãjkvM · Aρ(k)
])

,

(3.37)

with Tg(k)=(I−Π)
(
v ·∇xg

(k)
)
and I

(j)
ϵ,∆t=(ϵ2I−ajj∆tL)−1

. Then, ρ(j) is obtained by inserting

g(j) given by (3.37) in the macro equation (3.35) to get

ρ(j) =
(
I − a2jj∆t

2∇x ·
(
D

(j)
ϵ,∆t∇x

))−1
(
ρn −

j−1∑
k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V

(3.38)

−ajj∆t∇x ·

〈
vI

(j)
ϵ,∆t

(
ϵgn −

j−1∑
k=1

ãjk∆tTg
(k) −

j−1∑
k=1

ajk∆tvM · ∇xρ
(k)

+
1

ϵ

j−1∑
k=1

ajk∆tLg
(k) +

j−1∑
k=1

ãjk∆tvM · Aρ(k)
)〉

V

)
,

where D
(j)
ϵ,∆t = ⟨v ⊗ (ϵ2I − ajj∆tL)

−1
(vM)⟩V . Thus, ρ(j) can be updated by using (3.38) and

g(j) can be found explicitly by using (3.37).

3.6.1.2 Asymptotic preserving property

This part is dedicated to the asymptotic preserving property of the scheme (3.38)-(3.37). We

first show the AP property of type A time integrator, and we later remark how this property

is true for the CK-ARS time integrator with well-prepared initial data. First we have

Lemma 3.2 If gn = O(1) and g(k) = O(ϵ), ∀k ∈ {1, 2, . . . , j − 1}, then g(j) = O(ϵ),∀j ∈
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{2, 3, .., s} for small ϵ. In particular, we have ∀j ∈ {2, 3, .., s}

g(j) = ϵ

j∑
k=1

ajk
ajj

L−1(vM) · ∇xρ
(k) −

j−1∑
k=1

ajk
ajj

g(k) − ϵ

j−1∑
k=1

ãjk
ajj

L−1(vM) · Aρ(k) +O(ϵ2). (3.39)

Proof: Plugging in eq. (3.37) the expansion (3.24) of I
(j)
ϵ,∆t given by eq. (3.19), along with the

assumptions stated in the Lemma, we obtain (3.39) from which we deduce g(j) = O(ϵ) for all

j ∈ {2, 3, .., s}. 2

Remark 3.5 For type A time integrator, if gn = O(1), we have from (3.37):

g(1) = ϵ
a11
a11

vM · ∇xρ
(1) +O(ϵ2) = O(ϵ).

This satisfies the induction hypothesis in Lemma 3.2. Further, eq. (3.39) holds by omitting∑j−1
k=1 terms for j = 1. Thus, eq. (3.39) is true for j ∈ {1, 2, .., s}.

Lemma 3.2 enables to get an expansion of g(j) that can be inserted in (3.38) to identify the

time discretization of the asymptotic limit. However, this leads to quite involved calculations

which requires to introduce some notations.

Definition 3.2 For j ∈ {1, 2, .., s} and k1,m ∈ {1, 2, .., j} we define

Πm
j,k1

=

〈
v
ajk1
ak1k1

(
Sk0Sk1Sk2 . . . Skm−1

) (
Rkm

)〉
V

, (3.40)

with

Sk0 = 1, Skl =

kl−1∑
kl+1=1

aklkl+1

akl+1kl+1

for l ∈ {1, 2, ..,m− 1}, m ≥ 2,

Rkm =
km∑

km+1=1

akmkm+1L
−1(vM) · ∇xρ

(km+1) −
km−1∑

km+1=1

ãkmkm+1L
−1(vM) · Aρ(km+1).

As usual, we will use the convention
∑q

j=1 ≡ 0 if q ∈ Z\N.

The term Πm
j,k1

will be useful in the following study and deserves some remarks: the index m

denotes the depth of the embedded sums, j corresponds to the current stage and k1 corresponds

to the indexing over previous stages. We continue with the following lemma which gives an

induction relation on Πm
j,k1

.
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Lemma 3.3 For j ≥ 2, we have

Πm
j,j =

j−1∑
k1=1

Πm−1
j,k1

for m ∈ {2, 3, .., j}, and Πj
j,k1

= 0 for k1 ∈ {1, 2, .., j − 1}.

Proof: For the first relation, considering k1 = j (with j ≥ 2) in (3.40) leads to

Πm
j,j =

〈
v
(
Sk0SjSk2 . . . Skm−1

) (
Rkm

)〉
V
,

since ajj ̸= 0. Further, since Sk1=j =

j−1∑
k2=1

ajk2
ak2k2

, we get

Πm
j,j =

〈
v

j−1∑
k2=1

ajk2
ak2k2

(
Sk0Sk2 ...Skm−1

) (
Rkm

)〉
V

By employing the change of variables as kℓ → kℓ−1 for ℓ ∈ {2, 3, ..,m} in the right hand side of

above expression, we get

Πm
j,j =

〈
v

j−1∑
k1=1

ajk1
ak1k1

(
Sk0Sk1 . . . Skm−2

) (
Rkm−1

)〉
V

=

j−1∑
k1=1

〈
v
ajk1
ak1k1

(
Sk0Sk1 . . . Skm−2

) (
Rkm−1

)〉
V

=

j−1∑
k1=1

Πm−1
j,k1

,

which proves the first identity.

For the second relation, considering m = j in eq. (3.40) leads to

Πj
j,k1

=

〈
v
ajk1
ak1k1

(
Sk0Sk1Sk2 ...Skj−1

) (
Rkj
)〉

V

We first prove the relation for j = 2. It is clear from Definition 3.2 that the summation in Sk1

goes from k2 = 1 to k2 = k1 − 1. For k1 = 1, the summation goes to k2 = k1 − 1 = 0. Thus,

since Sk1 involves
∑0

1 for k1 = 1, it is zero according to the convention. Hence Πj
j,k1

= 0 for

k1 = 1.

We now prove the relation for j > 2. From Definition 3.2, it can be seen that the summations

in Sk1 and Sk2 go from k2 = 1 to k2 = k1 − 1 and k3 = 1 to k3 = k2 − 1 respectively. Thus, the

summation in Sk2 can go to atmost k3 = k2 − 1 = (k1 − 1) − 1 = k1 − 2. Proceeding in this

manner, we see that the summation in Skj−1 can go to atmost kj = k1 − (j − 1).
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For k1 ∈ {1, 2, .., j − 1}, kj = k1 − (j − 1) ∈ Z\N so that Skj−1 = 0 and hence Πj
j,k1

= 0 for

k1 ∈ {1, 2, .., j − 1} which ends the proof. 2

Now, we can use the previous Lemma to identify the asymptotic numerical scheme.

Lemma 3.4 When ϵ→ 0, the numerical scheme (3.35)-(3.36) degenerates into

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j∑

ℓ=1

(−1)ℓΠℓ
j,k1

)
for j ∈ {1, 2, .., s}, (3.41)

where Πℓ
j,k1

is given by definition 3.2.

Proof: We start with the macro equation in eq. (3.35)

ρ(j) = ρn −
j∑

k1=1

ajk1
∆t

ϵ
∇x · ⟨vg(k1)⟩V ,

in which we insert g(k1) given by eq. (3.39) to get

ρ(j) = ρn −∆t

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

(
k1∑

k2=1

ak1k2L
−1(vM) · ∇xρ

(k2) −
k1−1∑
k2=1

ãk1k2L
−1(vM) · Aρ(k2)

)〉
V

+
∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

(
k1−1∑
k2=1

ak1k2g
(k2)

)〉
V

+O(ϵ)

= ρn −∆t

j∑
k1=1

∇x ·
〈
v
ajk1
ak1k1

(
Sk0Rk1

)〉
V

+
∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

(
k1−1∑
k2=1

ak1k2g
(k2)

)〉
V

+O(ϵ)

= ρn −∆t

j∑
k1=1

∇x · Π1
j,k1

+
∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

(
k1−1∑
k2=1

ak1k2g
(k2)

)〉
V

+O(ϵ).

Inserting g(k2) from eq. (3.39) in the above equation and simplifying as before, we get,

ρ(j)= ρn −∆t

j∑
k1=1

∇x ·
(
Π1

j,k1
− Π2

j,k1

)
− ∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

(
k1−1∑
k2=1

ak1k2
ak2k2

k2−1∑
k3=1

ak2k3g
(k3)

)〉
V

+O(ϵ).

This procedure can be continued (j − 1) times to finally get,

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)
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−(−1)j−1∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

k1−1∑
k2=1

ak1k2
ak2k2

· · ·
kj−2−1∑
kj−1=1

akj−2kj−1

akj−1kj−1

kj−1−1∑
kj=1

akj−1kjg
(kj)

〉
V

+O(ϵ)

= ρn +∆t

j∑
k1=1

∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)

−(−1)j−1∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1
ak1k1

Sk0Sk1 . . . Skj−2

kj−1−1∑
kj=1

akj−1kjg
(kj)

〉
V

+O(ϵ).

We know from definition 3.2 that the summations in Sk1 and Sk2 go from k2 = 1 to k2 = k1 − 1

and k3 = 1 to k3 = k2 − 1 respectively. Thus, the summation in Sk2 can go to atmost

k3 = k2 − 1 = (k1 − 1)− 1 = k1 − 2. Proceeding in this manner, we see that the summations in

Skj−2 and
∑kj−1−1

kj=1 akj−1kjg
(kj) go to atmost kj−1 = k1−(j−2) and kj = k1−(j−1) respectively.

Since the summation in k1 goes to atmost j in the above equation, kj in the term
∑kj−1−1

kj=1 akj−1kjg
(kj)

goes to atmost kj = k1 − (j − 1) = j − (j − 1) = 1, and kj−1 in Skj−2 goes to atmost

kj−1 = k1 − (j − 2) = j − (j − 2) = 2 and so on. Thus, only kj = 1 remains in the

last summation so that
∑kj−1−1

kj=1 akj−1kjg
(kj) = a21g

(1) = ϵa21L
−1(vM) · ∇xρ

(1) + O(ϵ2) =
a21
a11
ϵa11L

−1(vM) · ∇xρ
(1) + O(ϵ2) = ϵSkj−1Rkj + O(ϵ2). Thus, we have

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)

−(−1)j−1∆t

j∑
k1=1

∇x ·
〈
v
ajk1
ak1k1

(
Sk0Sk1 . . . Skj−1Rkj

)〉
V

+O(ϵ)

= ρn +∆t

j∑
k1=1

[
∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)
+∇x ·

(
(−1)jΠj

j,k1

) ]
+O(ϵ).

2

We can now prove the asymptotic property of the scheme (3.35)-(3.36).

Theorem 3.2 When ϵ→ 0, the scheme (3.35)-(3.36) degenerates into

ρ(j) = ρn −∆t

j∑
k=1

ajk∇x ·
(〈
v ⊗ L−1(vM)

〉
V
∇xρ

(k)
)

+∆t

j−1∑
k=1

ãjk∇x ·
(〈
v ⊗ L−1(vM)

〉
V
Aρ(k)

)
, for j ∈ {1, 2, . . . , s}. (3.42)
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Proof: From Lemma 3.4, the asymptotic limit ϵ → 0 of the macro equation in eq. (3.35) is

(for j ∈ {1, 2, .., s})

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j∑

ℓ=1

(−1)ℓΠℓ
j,k1

)
= ρn +∆t∇x ·

(
j∑

ℓ=1

(−1)ℓ

(
Πℓ

j,j +

j−1∑
k1=1

Πℓ
j,k1

))

= ρn +∆t∇x ·

(
−Π1

j,j +

j∑
ℓ=2

(−1)ℓΠℓ
j,j +

j∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

)
.

Using the recurrence relation given by Lemma 3.3 and a change of indices lead to

ρ(j) = ρn +∆t∇x ·

(
−Π1

j,j +

j∑
ℓ=2

(−1)ℓ
j−1∑
k1=1

Πℓ−1
j,k1

+

j∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

)

= ρn +∆t∇x ·

(
−Π1

j,j −
j−1∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

+

j∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

)

= ρn +∆t∇x ·

(
−Π1

j,j + (−1)j
j−1∑
k1=1

Πj
j,k1

)
.

From Lemma 3.3, we have
∑j−1

k1=1 Π
j
j,k1

= 0, so that from Definition 3.2 we get

ρ(j) = ρn +∆t∇x ·
(
−Π1

j,j

)
= ρn −∆t∇x ·

(〈
v
ajj
ajj

Sk0Rk1=j

〉
V

)
= ρn −∆t∇x ·

(〈
v

(
k1∑

k2=1

ak1k2L
−1(vM) · ∇xρ

(k2) −
k1−1∑
k2=1

ãk1k2L
−1(vM) · Aρ(k2)

)〉
V

)
k1=j

= ρn −∆t

j∑
k2=1

ajk2∇x ·
(〈
v ⊗ L−1(vM)

〉
V
∇xρ

(k2)
)
+∆t

j−1∑
k2=1

ãjk2∇x ·
(〈
v ⊗ L−1(vM)

〉
V
Aρ(k2)

)
,

which ends the proof. 2

Remark 3.6 For CK-ARS schemes with well-prepared initial data, we obtain g(1) = gn = O(ϵ)

and ρ(1) = ρn. The presentation in this section will apply for CK-ARS from the second RK stage

onwards. For instance, definition 3.2 applies for CK-ARS with the following change in indexes:

j ∈ {2, 3, .., s}, k1,m ∈ {2, 3, .., j} and all the summations involved start from 2 instead of 1

since a11 = 0. The lemmas and theorems that follow also undergo the corresponding change in

indexes, and the AP property for CK-ARS can be observed for j ∈ {2, 3, .., s}.

Remark 3.7 Upon incorporating the spatial matrices corresponding to staggered grid in place
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of the continuous gradient operator, we obtain in the limit ϵ→ 0,

ρ(j) =
(
I + ajj∆tGcenρ

(〈
v ⊗ L−1(vM)

〉
V
Gceng

))−1×(
ρn −

j−1∑
k=1

ajk∆tGcenρ

(〈
v ⊗ L−1(vM)

〉
V
Gcengρ

(k)
)

+

j−1∑
k=1

ãjk∆tGcenρ

(〈
v ⊗ L−1(vM)

〉
V
GavggAρ

(k)
))

. (3.43)

The matrices Gcenρ ,Gceng are given in section 3.5.2 and Gavgg =
1
2
circ([1, 1]). Thus,(

GavggA
(
ρ(k)
))

i+1/2
= 1

2
A
(
ρ
(k)
i+1 + ρ

(k)
i

)
. This results in a central discretization of the advection

term in the macro equation. Thus, we obtain a consistent internal RK stage approximation of

the advection-diffusion equation in the limit ϵ→ 0.

To obtain an upwind discretization of the advection term, we use the space operator Gupg on

Aρ(k) instead of Gavgg . This is defined as follows:

(
GupgA

(
ρ(k)
))

i+1/2
=

{
Aρ

(k)
i if A ≥ 0

Aρ
(k)
i+1 if A < 0

. (3.44)

This results in a first order upwind discretization of the advection term. For second order

upwind discretization, the following is required:

(
GupgA

(
ρ(k)
))

i+1/2
=

A
(

3
2
ρ
(k)
i − 1

2
ρ
(k)
i−1

)
if A ≥ 0

A
(

3
2
ρ
(k)
i+1 − 1

2
ρ
(k)
i+2

)
if A < 0

. (3.45)

3.6.2 Inflow Boundaries

So far, periodic boundary conditions were considered. In this part, we consider inflow boundary

conditions for f which is solution to (3.1)

f(t, x, v) = fb(t, x, v), (x, v) ∈ ∂Ω× V such that v · n(x) < 0, ∀t, (3.46)

where fb is a given function and n(x) denotes the unitary outgoing normal vector to ∂Ω.

As mentioned in [200, 199], such boundary conditions cannot be adapted naturally to the

standard micro-macro unknowns ρ(t, x) and g(t, x, v) which form a solution to (3.6) and a

specific treatment with artificial boundary conditions is required (see [200, 199, 242]). To
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overcome this drawback, another micro-macro decomposition is introduced in [199]

f = ρM + g, ρ(t, x) = ⟨f(t, x, ·)⟩V−
, ⟨g(t, x, ·)⟩V−

= 0, ⟨f⟩V−=

∫
V−
fdµ∫

V−
Mdµ

, (3.47)

where the velocity domain V− is defined by

V−(x) = {v ∈ V, ω(x, v) < 0}, V+(x) = V \V−(x). (3.48)

The function ω(x, v) extends v · n(x) in the interior of domain. Some examples of ω(x, v) for

different geometries are provided in [199]. It can be seen that the boundary conditions for

ρ(t, x) and g(t, x, v) can be evaluated from the inflow boundary condition in eq. (3.46). Indeed,

for (x, v) ∈ ∂Ω× V such that v · n(x) < 0, ∀t, we define

ρb(t, x) = ⟨fb(t, x, ·)⟩V−
, gb(t, x, v) = fb(t, x, v)− ρb(t, x)M(v). (3.49)

The derivation of the micro-macro model needs to be adapted to this decomposition. The

projector Π− is defined as Π−h = ⟨h⟩V−
M . Then, substituting eq. (3.47) into eq. (3.1) and

applying Π− and I − Π− enable to get the macro and micro equations:

∂tρ+
1

ϵ
⟨vM⟩V−

· ∇xρ+
1

ϵ
∇x · ⟨vg⟩V−

=
1

ϵ2
⟨Lg⟩V−

, (3.50)

∂tg +
1

ϵ

(
I − Π−) (v · ∇xg) +

1

ϵ

(
I − Π−) vM · ∇xρ =

1

ϵ2
L̃g, (3.51)

where L̃ = (I − Π−)L. Moreover, it can be seen that L̃ = (I − Π−)L (I − Π−) = (I − Π−)L (I − Π)

since Π−h,Πh ∈ N(L),∀h.
The macro equation (3.50) turns out to be more complicated than the one obtained for standard

micro-macro decomposition. It can be made simpler by using ρ = ρ+⟨g⟩V , f = ρM−⟨g⟩V M+g,

obtained from the decompositions (3.6) and (3.47). Applying Π to eq. (3.1) instead of Π−, we

obtain the simpler macro equation,

∂tρ+
1

ϵ
∇x · ⟨vg⟩V = 0, (3.52)

and the micro-macro system that we will consider in the sequel is (3.51)-(3.52).
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3.6.2.1 Numerical scheme

In this part, we present the fully discretized scheme to approximate (3.51)-(3.52). The boundary

conditions on ρb and gb in eq. (3.49) will be utilised along with the relation ρ = ρ + ⟨g⟩V that

allows to link ρ and ρ in the interior of the domain. We will use a staggered grid in space

following [199] and a high order scheme in time, following the strategy developed previously.

To ease the reading, only the first order version will be presented.

We present the space approximation based on a staggered grid. Let us consider the space

interval [0, L] with two grids: xi = i∆x and xi+1/2 = (i + 1/2)∆x, ∆x = L/(Nx − 1). The

’interior’ variables such as ρ, ρ are stored at grid points xi with i = 1, . . . , Nx − 2) and g is

stored at i+1/2 = 1/2, · · · , Nx−3/2. We also use the variable gcl = ḡ∪ ḡb ∈ RNx+1. The whole

domain including boundary will be considered for the micro unknown ḡ so that the components

of gcl correspond to the grid indices i+1/2 = −1/2, · · · , Nx−1/2. The matrices corresponding

to spatial operators are given by

B−
upw =

1

∆x
circ([−1, 1])(Nx−1)×(Nx+1),B

+
upw =

1

∆x
circ([0,−1, 1])(Nx−1)×(Nx+1), (3.53)

Bcenρ =
1

∆x
circ([−1, 1])(Nx−2)×(Nx−1), Bavg =

1

2
circ([1, 1])(Nx−2)×(Nx−1), (3.54)

Bceng =
1

∆x
circb([−1, 1])(Nx−1)×(Nx−2). (3.55)

The circb definition is presented in section 3.8. Further, we also introduce a vector containing

the boundary values of ρ as ρbd = 1
∆x

[
−ρbi=0

, 0, 0, ..., 0, ρbi=Nx−1

]T
(Nx−1)×1

. We now present our

scheme by using this matrix notation. For simplicity, we assume that ρbd is time invariant. We

also use the following notations:

Th =
(
I − Π−) (v+B−

upw + v−B+
upw

)
h,Dϵ,∆t =

〈
v
(
ϵ2I −∆tL̃

)−1
∆t
(
I − Π−) (vM)⟩V ,

Eϵ,∆t =
〈(
ϵ2I −∆tL̃

)−1
∆t
(
I − Π−) (vM)

〉
V
, Iϵ,∆t =

(
ϵ2I −∆tL̃

)−1
, J =

(
I − Π−) (vM).

The micro equation (3.51) is discretised in time as in the previous (periodic) case

gn+1 = Iϵ,∆t

(
ϵ2gn − ϵ∆tTgncl − ϵ∆tJBcengρ

n+1 − ϵ∆tJρbd
)
, (3.56)

and for the macro equation (3.52), we obtain

ρn+1 − ρn

∆t
+

1

ϵ

〈
vBcenρg

n+1
〉
V
= 0
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Substituting gn+1 in the above equation, we get

ρn+1 = ρn −∆tBcenρ

〈
vIϵ,∆t

(
ϵgn −∆tTgncl −∆tJBcengρ

n+1 −∆tJρbd
)〉

V
. (3.57)

In index notation, we use ρn+1
i = ρn+1

i + 1
2
⟨gn+1

i−1/2 + gn+1
i+1/2⟩V (since ρ = ρ + ⟨g⟩V ) to match

the two grids. In matrix notation, this becomes ρn+1 = ρn+1 + Bavg⟨gn+1⟩V with Bavg given

by (3.54). Substituting this into the above equation and inserting the expression for gn+1 into

Bavg ⟨gn+1⟩V enable to update the interior macro unknown

ρn+1 =
(
I − ϵBavg

(
Eϵ,∆tBceng

)
−∆tBcenρ

(
Dϵ,∆tBceng

))−1×(
ρn −Bavg

〈
Iϵ,∆t

(
ϵ2gn − ϵ∆tTgncl − ϵ∆tJρbd

)〉
V

−∆tBcenρ

〈
vIϵ,∆t

(
ϵgn −∆tTgncl −∆tJρbd

)〉
V

)
. (3.58)

The right hand side of above expression involves only known quantities so that ρn+1 can be

updated from (3.58) which can then be used to update gn+1 in (3.56). Then, we update gn+1
cl

thanks to the boundary conditions (3.49), and finally ρn+1 can be computed from ρn+1 =

ρn+1 +Bavg ⟨gn+1⟩V . In the limit ϵ→ 0, the above equation becomes,

ρn+1=
(
I +∆tBcenρ

(〈
v ⊗ L̃−1J

〉
V
Bceng

))−1 (
ρn−∆tBcenρ

(〈
v ⊗ L̃−1J

〉
V
ρbd

))
This is a consistent discretization of the diffusion equation in eq. (3.5) since ⟨v ⊗ L̃−1J⟩V =

⟨v⊗L−1(vM)⟩V = −κ. Further, the high order scheme in time can be constructed in a similar

manner as before.

We now present the evaluation of boundary condition on ρ. For i = 1/2 and i = 3/2, the micro

equation in (3.56) simplifies as:

gn+1
1
2

= (−∆tL̃)−1

(
−ϵ∆t

(
I − Π−) vM ρn+1

1 − ρn+1
0

∆x
+ 2ϵ∆t

(
I − Π−) v+ gn0

∆x

)
+ O(ϵ2) (3.59)

gn+1
3
2

= (−∆tL̃)−1

(
−ϵ∆t

(
I − Π−) vM ρn+1

2 − ρn+1
1

∆x

)
+ O(ϵ2) (3.60)

since gn− 1
2

= 2gn0 − gn1
2

, and gn
i+ 1

2

= O(ϵ) for all n ≥ 1 and i+ 1
2
= 1/2, 3/2, 5/2. Inserting these

into the macro equation corresponding to i = 1 and simplifying, we obtain

ρn+1
1 = ρn1 −

∆t

ϵ

〈
v
gn+1

3
2

− gn+1
1
2

∆x

〉
V

(3.61)
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= ρn1 −
∆t

∆x2

〈
vL̃−1

(
I − Π−) (vM)

〉
V

(
ρn+1
2 − 2ρn+1

1 + ρn+1
0

)
(3.62)

− ∆t

∆x2
2
〈
vL̃−1

(
I − Π−) (v+gn0 )〉

V
(3.63)

up to O(ϵ). Further, observing that
〈
vL̃−1 (I − Π−) (vM)

〉
= ⟨vL−1(vM)⟩V and〈

vL̃−1 (I − Π−) (v+gn0 )
〉
V

= ⟨vL−1 (I − Π) (v+gn0 )⟩V , and inserting gn0 = fn
0 − ρn0M into the

above equation lead to:

ρn+1
1 = ρn1 −

∆t

∆x2
〈
vL−1(vM)

〉
V

(
ρn+1
2 − 2ρn+1

1 + ρn+1
0 − 2

⟨vL−1 (I − Π) (v+M)⟩V
⟨vL−1(vM)⟩V

ρn0

+2
⟨vL−1 (I − Π) (v+fn

0 )⟩V
⟨vL−1(vM)⟩V

)
(3.64)

For both choices M(v) = 1 on V = [−1, 1] and M(v) = 1√
2π
e−v2/2 on V = R, we observe that

2
⟨vL−1(I−Π)(v+M)⟩

V

⟨vL−1vM⟩V
= 1. Hence, for these cases with constant in time boundary conditions, the

above equation simplifies as:

ρn+1
1 = ρn1 −

∆t

∆x2
〈
vL−1(vM)

〉
V

(
ρn+1
2 − 2ρn+1

1 + 2
⟨vL−1 (I − Π) (v+fn

0 )⟩V
⟨vL−1(vM)⟩V

)
(3.65)

where ρ̃0 = 2
⟨vL−1(I−Π)(v+fn

0 )⟩
V

⟨vL−1(vM)⟩V
is the boundary value of the micro-macro numerical scheme in

the diffusion limit. For M(v) = 1√
2π
e−v2/2 on V = R, this evaluates to ρ̃0 = 2

√
2
π
≃ 1.59. In

the work by [199], this value is evaluated to be ρ̃0 = 0.75 for M(v) = 1 on V = [−1, 1].

3.7 Numerical results

In this section, we present the numerical validation of our high order asymptotic preserving

schemes in different configurations.

3.7.1 Diffusion asymptotics

First, we check time and space accuracy for the micro-macro scheme in the diffusion limit.

3.7.1.1 Time order of accuracy

The spatial domain L = [0, 2π] of the problem is discretized using Nx = 50 grid points. The

velocity domain is truncated to [−vmax, vmax] with vmax = 5 and we take ∆v = 1. The initial
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condition is:

ρ(0, x) = 1 + cos(x)

Well-prepared data (WP): g(0, x, v) = ϵ2(I − Π)
(
v2M

)
ρ(0, x)

Non-well-prepared data (N-WP): g(0, x, v) = (I − Π)
(
v2M

)
ρ(0, x),

with M(v) = 1√
2π
e−v2/2. Periodic boundary conditions are used on both ρ and g. The spa-

tial terms are discretised by using the atmost-third order accurate matrices on non-staggered

grid presented in section 3.5.3. The final time is T = 0.5, and the following ∆t are consid-

ered to validate the different high order time integrators: ∆t = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001.

The type A micro-macro schemes constructed using the Butcher tableau corresponding to DP-

A(1, 2, 1), DP2-A(2, 4, 2) and DP1-A(2, 4, 2) are considered. Although DP1-A(2, 4, 2) is second

order accurate, the implicit part of it when used separately is third order accurate. Further,

we also consider the type CK-ARS micro-macro schemes constructed using Butcher tableau

corresponding to ARS(1, 1, 1), ARS(2, 2, 2) and ARS(4, 4, 3). The Butcher tableau of different

time integrators utilised are presented in section 3.9.

In fig. 3.1, we plot the time error for the different time integrators in both WP and N-WP

cases and for different values of ϵ. Note that the reference solution for each curve is obtained

by using the same micro-macro scheme corresponding to that curve with ∆t = 10−4. For

ϵ = 1, the required orders of accuracy are recovered for type A schemes with both N-WP

and WP initial data, as observed in figs. 3.1a and 3.1b. For ϵ = 10−4, due to the asymptotic

degeneracy of our scheme into a fully-implicit scheme for diffusion equation, only the implicit

part of the Butcher tableau plays a role. Hence DP1-A(2, 4, 2) becomes third order accurate in

time, while DP-A(1, 2, 1) and DP2-A(2, 4, 2) are first and second order accurate respectively.

This is shown in figs. 3.1c and 3.1d. On the other hand, CK-ARS schemes with both N-WP

and WP initial data for ϵ = 1 recover the required orders of accuracy as shown in figs. 3.1e

and 3.1f. However, for ϵ = 10−4, required orders of accuracy are observed only when WP

initial data are used (fig. 3.1h). As shown in the analyses presented in previous sections, usage

of N-WP initial data for CK-ARS time integrators does not allow the asymptotic accuracy

(fig. 3.1g). The required order of accuracy for N-WP initial data with CK-ARS time integrator

can be obtained by modifying the initial few time steps as ∆tp for pth order accurate scheme

as discussed in [241, 242]. On the other hand, the type A time integrators DP1-A(2, 4, 2) and

DP2-A(2, 4, 2) that we have used do not require such initial time step reduction for maintaining

the required order of accuracy.
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(a) A N-WP, ϵ = 1 (b) A WP, ϵ = 1 (c) A N-WP, ϵ = 10−4 (d) A WP, ϵ = 10−4

(e) CK N-WP, ϵ = 1 (f) CK WP, ϵ = 1 (g) CK N-WP, ϵ=10−4 (h) CK WP, ϵ = 10−4

Figure 3.1: Accuracy in time for different type A and CK-ARS time integrators (both WP and
N-WP initial data). The reference solution is obtained from the micro-macro with ∆t = 10−4.

Since we proved the asymptotic preserving property, the diffusion solution is used as reference

solution in the asymptotic regime (ϵ = 10−4) with ∆t = 10−4 (in fig. 3.2) to check the orders

of accuracy of high order integrators. The results are similar to the ones obtained for ϵ = 10−4

in fig. 3.1, except that here we observe a plateau for third order scheme and small ∆t. This is

due to the O(ϵ2) difference between the schemes based on micro-macro and diffusion models.

This error dominates O(∆t3) error, and hence it is observed.

3.7.1.2 Space order of accuracy

The problem set-up is the same as described in the previous subsection, except for the following

changes. Here, we consider the final time to be T = 0.01 and ∆t = 0.001 so that the error

in time is small enough to study the spatial accuracy. To do so, we consider the following

number of points in space: Nx = 20, 24, 30, 40 and 60. The reference solution is obtained with

Nx = 120.

Since the spatial accuracy plots obtained from different time integrators are quite similar, we

present only the plots obtained by using DP1-A(2, 4, 2) and ARS(4, 4, 3) for different values of ϵ

(ϵ = 10−4, 0.2, 1) in figs. 3.3a and 3.3b. For the spatial discretization, we only show the results

obtained by the third order spatial matrices on non-staggered grid presented in section 3.5.3

so that the scheme is expected to be third order accurate in space. In figs. 3.3a and 3.3b, the

expected order is observed for the two time integrators and for the three considered values of ϵ.

75



(a) A N-WP (b) A WP

(c) CK N-WP (d) CK WP

Figure 3.2: Accuracy in time for different type A and CK-ARS time integrators (both WP
and N-WP initial data). The reference solution is obtained from the diffusion equation with
∆t = 10−4.

(a) A N-WP (b) CK-ARS WP

Figure 3.3: Accuracy in space for the third order spatial scheme coupled with DP1-A(2, 4, 2)
(left) and ARS(4, 4, 3) (right) for the time approximation.
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(a) ϵ = 1 (b) ϵ = 0.4 (c) ϵ = 10−4

Figure 3.4: Qualitative results for diffusion asymptotics

3.7.1.3 Qualitative results

In this part, we compare the density obtained by the micro-macro equation (MM), the linear

kinetic equation with BGK collision operator (BGK) and the asymptotic diffusion equation,

for different values of ϵ. The MM scheme described in previous sections is utilised, the BGK

is discretized using an IMEX (implicit treatment of collision term and explicit treatment of

transport term) scheme whereas for the diffusion model, an implicit scheme is used. For all

three models, the Butcher tableau corresponding to DP1-A(2, 4, 2) time integrator is used. For

the spatial discretization, we use third order scheme on non-staggered grid.

The problem domain L = [0, 2π] is discretised using Nx = 20 grid points for all the three

models. The final time is T = 0.5, and ∆t = 0.005. We use the same N-WP initial and

boundary conditions described in the previous subsection. Further, we also consider the same

velocity discretization as before for both MM and BGK models.

In fig. 3.4a for rarefied regime (ϵ = 1), the MM and BGK models compare very well, while

the diffusion model is different as expected. In the intermediate regime (ϵ = 0.2), the BGK

and MM models match very well while the diffusion model is slightly different. For ϵ = 10−4,

we only compare MM and the diffusion in fig. 3.4c and illustrate the AP property of the time

integrators used for MM.

3.7.2 Advection-diffusion asymptotics

In this subsection, we present the time accuracy of our high order micro-macro scheme for the

advection-diffusion case. As in the diffusion case, the spatial domain L = [0, 2π] is discretised

using Nx = 20 grid points whereas the velocity domain is [−vmax, vmax] with vmax = 5 and

77



(a) A (b) CK-ARS

Figure 3.5: Accuracy in time. Left: DP1-A(2, 4, 2) (N-WP initial data). Right: ARS(4, 4, 3)
(WP initial data). The reference solution is obtained from the micro-macro scheme with ∆t =
10−4.

∆v = 1. The initial condition for the problem is:

ρ(0, x) = sin(x) (3.66)

Well-prepared data (WP): g(0, x, v) = ϵ2(I − Π)
(
v2M

)
ρ(0, x) (3.67)

Non-well-prepared data (N-WP): g(0, x, v) = (I − Π)
(
v2M

)
ρ(0, x), (3.68)

with M(v) = 1√
2π
e−v2/2. Periodic boundary conditions are used on both ρ and g. The spatial

terms are discretised by using the atmost-first order accurate matrices on staggered grid pre-

sented in section 3.5.2. The final time is T = 0.5, and the following time steps are considered:

∆t=0.5, 0.1, 0.05, 0.01, 0.005, 0.001. We observe the time order of accuracy for both ϵ = 1 and

ϵ = 10−4. We choose the highest order time integrator in both type A and CK-ARS schemes

for studying the time accuracy. Hence, we consider DP1-A(2, 4, 2) and ARS(4, 4, 3) with N-WP

and WP data respectively.

Asymptotically, our micro-macro scheme degenerates to a consistent scheme for the advection-

diffusion equation with advection and diffusion terms being treated explicitly and implicitly

respectively. Hence, unlike the case of diffusion asymptotics for which an extra order is ob-

served asymptotically, DP1-A(2, 4, 2) remains second order accurate for ϵ = 10−4 since both

explicit and implicit matrices of the Butcher tableau are involved here (fig. 3.5a). For ϵ = 1,

the required second order accuracy is observed. Further, the required third order accuracy of

ARS(4, 4, 3) is observed for both ϵ = 10−4, 1 in fig. 3.5b, since well-prepared initial data is

considered.
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3.7.3 Inflow boundary condition

In this subsection, the high order numerical scheme for micro-macro model that allows inflow

boundary conditions is validated numerically. We first present the time accuracy results for

high order schemes. Then, some qualitative plots are shown for two tests with zero inflow at the

right boundary, and equilibrium and non-equilibrium inflows respectively at the left boundary.

3.7.3.1 Time order of accuracy

If the domain of the problem is a half-plane, ω(x, v) =
[
−v, 0, 0, · · ·

]
can be chosen ∀x as de-

scribed in [199]. Here, for numerical purposes, we consider a domain of L = [0, 2] and assume

that the right boundary does not influence the dynamics.

The spatial domain is discretised using Nx = 20 grid points and the velocity domain is

[−vmax, vmax] with vmax = 5 and ∆v = 1. The initial conditions at all interior points and

right boundary conditions for the variables ρ, ρ and g are considered to be 0. The left boundary

conditions (for vk > 0) are:

f (t, xi = 0, vk) =M(vk), ρ (t, xi = 0) = 1, g(t, xi+1/2 = −∆x/2, vk) = 0, (3.69)

withM(v) = 1√
2π
e−v2/2. The final time is T = 0.1, and the following time steps are considered to

check the accuracy in time: ∆t = 0.1, 0.05, 0.01, 0.005, 0.001. Like in the previous problems, we

observe the time order of accuracy for both ϵ = 1 and ϵ = 10−4. The time integrators considered

are DP-A(1, 2, 1) and DP1-A(2, 4, 2). The reference solution for each curve in fig. 3.6 is obtained

by using the same micro-macro scheme corresponding to that curve with ∆t = 10−4. For type

A time integrators with ϵ = 1 in fig. 3.6a, first and second order accuracies of DP-A(1, 2, 1)

and DP1-A(2, 4, 2) are observed. In fig. 3.6b for ϵ = 10−4, first and third order accuracies

of DP-A(1, 2, 1) and DP1-A(2, 4, 2) respectively are observed. As for the (periodic) diffusion

case, DP1-A(2, 4, 2) turns out to be third order accurate since only the implicit part of Butcher

tableau is involved asymptotically. For ARS(2, 2, 2) and ARS(4, 4, 3) time integrators (not

shown here), order reduction to first order for ϵ = 1 (due to the initial condition). However, for

ϵ = 10−4, the required second and third orders respectively are observed.

3.7.3.2 Qualitative results for equilibrium inflow

In this part, we consider the same problem as before and present a comparison of density

plots obtained by using schemes based on micro-macro (MM), full-kinetic (BGK) and diffusion

models, for different regimes of ϵ. The boundary conditions for diffusion model ρ(t, x = 0) = 1

and ρ(t, x = 2) = 0. The final time is T = 0.1, Nx = 40 and ∆t = 0.001. Further, we consider
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(a) Type A, ϵ = 1 (b) Type A, ϵ = 10−4

Figure 3.6: Accuracy in time with type A schemes for ϵ = 1 (left) and ϵ = 10−4 (right).
The reference solution is obtained from the micro-macro for inflow boundaries scheme with
∆t = 10−4.

(a) ϵ = 1 (b) ϵ = 0.4 (c) ϵ = 10−4

Figure 3.7: Qualitative results for equilibrium inflow at the left boundary.

the same velocity discretization as before for both MM and BGK models. The results for MM

are obtained by DP1-A(2, 4, 2) time integrator.

In fig. 3.7a for rarefied regime (ϵ = 1), the MM and BGK results are in good agreement. In

the intermediate regime (ϵ = 0.4) in fig. 3.7b, the MM and BGK results are still close, and

still different from the diffusion one. For ϵ = 10−4, only MM and the diffusion are plotted and

are found to be in very good agreement, thereby illustrating the AP property of the numerical

scheme for MM.

3.7.3.3 Qualitative results for non-equilibrium inflow

In this part, we consider the same problem as before, but the left boundary condition is chosen

as (for vk > 0)

f (t, xi=0, vk) = vkMk, ρ (t, xi=0) = ⟨f (t, xi=0, vk)⟩V−
(3.70)
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g
(
t, xi+1/2=−∆x

2
, vk
)
=2
(
f (t, xi=0, vk)−ρ (t, xi=0)Mk

)
−g
(
t, xi+1/2=

∆x
2
, vk
)
. (3.71)

The final time and time step are the same as in the previous (equilibrium inflow) case. The

time integrator used is DP1-A(2, 4, 2). Here, we present a comparison of plots obtained by

using schemes based on MM, BGK and diffusion models, for different regimes of ϵ. The scheme

described in subsection 3.6.2.1 is used for the micro-macro model and a standard BGK approx-

imation where only inflow boundary condition is needed serves as a reference. For diffusion,

the diffusion term is treated implicitly and the left boundary condition for diffusion model is

obtained from [180] which translates in our context as:

ρ(t, xi = 0) =

∑
vk>0 vkf (t, xi = 0, vk)∆v∑

vk>0 vkMk∆v

+
1

κ
∑

vk
Mk∆v

∑
vk>0

v2k

(
f (t, xi = 0, vk)−Mk

∑
vk>0 vkf (t, xi = 0, vk)∆v∑

vk>0 vkMk∆v

)
∆v. (3.72)

For the continuous in velocity form, the above boundary value is evaluated to be ρ0 =
π+4
2
√
2π

≃
1.42.

In fig. 3.8a for rarefied regime (ϵ = 1), the MM and BGK models compare very well, while

the diffusion model is driven by the macro boundary condition. In the intermediate regime

(ϵ = 0.4) in fig. 3.8b, in the MM and BGK results (which are in a good agreement), a boundary

layer starts to be created whereas it is not the case for the diffusion model. For ϵ = 10−4, one

can see from fig. 3.9 that MM model develops a boundary layer at the left boundary before

aligning with the diffusion model in the interior of the domain. This is consistent with the

results observed using first order schemes in literature [180, 199, 200, 75].

Further in fig. 3.10, we present the numerical results of MM and diffusion models for ϵ = 10−4

with refined velocity grid to demonstrate the difference between boundary values of 1.42 from

(3.72) and 1.59 from micro-macro numerical scheme (derived in subsection 3.6.2.1).

3.8 Appendix: Matrix notation

The circ function is given by:

circ([a1, a2, .., am, .., aM ]) =

 am am+1 .. aM 0 .. 0 a1 .. am−1

am−1 am am+1 .. aM 0 .. 0 a1 ..

am+2 .. aM 0 .. 0 a1 .. am am+1

am+1 .. aM 0 .. 0 a1 .. am−1 am

 (3.73)
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(a) ϵ = 1 (b) ϵ = 0.4

Figure 3.8: Qualitative results for non-equilibrium inflow at the left boundary. ϵ = 1, 0.4.
vmax = 5 and ∆v = 1. Nx = 40

(a) ϵ = 10−4, Nx = 40 (b) ϵ = 10−4, Nx = 100 (c) ϵ = 10−4, Nx = 200

Figure 3.9: Qualitative results for non-equilibrium inflow at the left boundary. ϵ = 10−4.
vmax = 5 and ∆v = 1

(a) ϵ = 10−4, Nx = 40 (b) ϵ = 10−4, Nx = 100 (c) ϵ = 10−4, Nx = 200

Figure 3.10: Qualitative results for non-equilibrium inflow at the left boundary. ϵ = 10−4.
vmax = 10 and ∆v = 0.125
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The circb([−1, 1])(Nx−1)×(Nx−2) function is given by:

circb([−1, 1])(Nx−1)×(Nx−2) =

 1 0 .. 0
−1 1 0 ..

.. .. −1 1

.. .. .. −1


(Nx−1)×(Nx−2)

(3.74)

3.9 Appendix: Butcher tableau

The following is the 2-stage second order accurate Butcher tableau ARS(2, 2, 2):

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

Here, γ = 1− 1√
2
and δ = 1− 1

2γ
.

The following is the 4-stage third order accurate Butcher tableau ARS(4, 4, 3):

0 0 0 0 0 0

1/2 1/2 0 0 0 0

2/3 11/18 1/18 0 0 0

1/2 5/6 −5/6 1/2 0 0

1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

0 0 0 0 0 0

1/2 0 1/2 0 0 0

2/3 0 1/6 1/2 0 0

1/2 0 −1/2 1/2 1/2 0

1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

For type A, we use 2-stage first order accurate Butcher tableau DP-A(1, 2, 1) (γ ≥ 1
2
)

0 0 0

1 1 0

1 0

γ γ 0

1 1− γ γ

1− γ γ

The following is the 4-stage second order accurate Butcher tableau DP2-A(2, 4, 2):

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1 0 1/2 1/2 0

0 1/2 1/2 0

γ γ 0 0 0

0 −γ γ 0 0

1 0 1− γ γ 0

1 0 1/2 1/2− γ γ

0 1/2 1/2− γ γ
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The following is the 4-stage second order accurate Butcher tableau DP1-A(2, 4, 2) which achieves

third order accuracy on the DIRK part:

0 0 0 0 0

1/3 1/3 0 0 0

1 1 0 0 0

1 1/2 0 1/2 0

1/2 0 1/2 0

1/2 1/2 0 0 0

2/3 1/6 1/2 0 0

1/2 −1/2 1/2 1/2 0

1 3/2 −3/2 1/2 1/2

3/2 −3/2 1/2 1/2
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Chapter 4

An asymptotic preserving scheme

satisfying entropy stability for the

barotropic Euler system

In this chapter, we study structure-preserving numerical methods for lowMach number barotropic

Euler equations. Besides their asymptotic preserving properties that are crucial in order to ob-

tain uniformly consistent and stable approximations of the Euler equations in their singular

limit as the Mach number approaches 0, our aim is to preserve discrete entropy stability. Suit-

able acoustic/advection splitting approach combined with time implicit-explicit approximations

are used to achieve the asymptotic preserving property. The entropy stability of different space

discretisation strategies is studied for different values of Mach number and is validated by the

numerical experiments.

4.1 Introduction

Many problems arising in science and engineering often contain dimensionless parameters that

appear when suitable non-dimensionalisation is employed. For barotropic/full Euler systems,

the parameter ϵ (Mach number) dictates whether the flow is compressible (ϵ > 1) or incompress-

ible (ϵ << 1). It has been rigorously proved in [178, 179, 277] that the solutions of hyperbolic

system converge to those of mixed hyperbolic-elliptic incompressible system when ϵ approaches

zero. Explicit numerical methods for these systems require restrictive ϵ−dependent stability

condition on time step, and hence they become computationally very expensive when ϵ becomes

small. Further, Godunov-type compressible flow solvers suffer from loss of accuracy as numerical

dissipation is inversely proportional to ϵ [82]. Fully implicit numerical methods, on the other
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hand, are very complicated to implement due to non-linearity of the Euler systems. Hence,

attempts were made to efficiently extend the compressible flow solvers to incompressible/low

Mach number limit consisting of divergence-free constraint on velocity field. In particular,

semi-implicit time stepping techniques allow for the compressible solver to transform into an

incompressible solver as ϵ becomes small, and its stability requirements are independent of

ϵ. Such schemes are called asymptotic preserving (AP) schemes, as firstly introduced by Jin

[167] for kinetic equations and later extended to hyperbolic systems (see [169] for review). Semi-

implicit time stepping is often achieved by implicit-explicit (IMEX) approach involving implicit

treatment of stiff terms and explicit treatment of non-stiff terms. Several IMEX-AP schemes

have been formulated by using different strategies to split the flux into stiff and non-stiff parts,

and we refer the interested reader to [81, 297, 68, 143, 33, 228, 34, 332, 41, 39, 89, 90, 331, 10].

In addition to asymptotic preserving properties, another crucial property of a numerical method

is its stability. For the Euler equations, this means non-linear stability dictated by the second

law of thermodynamics, the entropy inequality. Consequently, entropy stability has emerged as

a non-linear stability criterion for numerical schemes since the seminal work of Tadmor [293,

294, 295]. Several entropy stable numerical methods for different hyperbolic systems have been

developed. These include developments specific to shallow water equations [124, 323, 236, 5],

the Euler equations [21, 158, 251, 56, 259, 260, 125, 73, 61, 328], and magnetohydrodynamics

equations [57]. However, these entropy stable schemes were proposed for fixed Mach number ϵ

being order one. On the other hand, the governing system exhibits entropy inequality for all

non-zero values of ϵ. Hence, our aim in this chapter is to develop a numerical scheme that is

entropy stable for different values of ϵ, and AP as ϵ approaches zero. As fas as we are aware,

this question has not yet been studied in literature. The present chapter makes the first step

in this research direction, discusses possible discretisation strategies, and validates them by a

series of numerical experiments.

The chapter is organised as follows: Section 4.2 presents the barotropic Euler system, its en-

tropy stability property for different values of Mach number ϵ, and its asymptotic limit as ϵ

approaches zero. Section 4.3 presents the numerical method that employs an IMEX-AP time

discretisation in the spirit of [89, 39], and three different space discretisation strategies. The

asymptotic preserving property of fully discrete scheme is also presented. Section 4.4 presents

the numerical validation of our scheme by depicting the AP and entropy stability properties.

Section 4.5 concludes the chapter.
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4.2 Mathematical model

In this section, we present the barotropic Euler system, its entropy stability property, and its

asymptotic limit as Mach number approaches 0.

4.2.1 The barotropic Euler system

Consider the barotropic Euler system,

∂tρ+∇ · (ρu) = 0 (4.1)

∂t(ρu) +∇ · (ρu⊗ u) +∇p(ρ) = 0, (4.2)

where x ∈ Ω ⊂ Rd, t ∈ R+ ∪ {0}, ρ(x, t) : Ω × R+ ∪ {0} → R+ is the fluid density, u(x, t) :

Ω× R+ ∪ {0} → Rd is the fluid velocity, and p(ρ(x, t)) = κργ ∈ R+ is the pressure. Here, d is

the dimension in space, and κ, γ > 1 are constants. This system is hyperbolic with eigenvalues

(in direction n) u ·n− c and u ·n+ c, where c =
√
γp/ρ is the sound speed, and the conserved

quantities are density, ρ and momentum, ρu. The initial conditions required for the system are

ρ(x, 0) = ρ0(x) and u(x, 0) = u0(x), and the boundary is considered to have periodic or zero

flux conditions.

We perform non-dimensionalization of the above barotropic Euler system in (4.1) and (4.2) by

using the reference values xr, tr, ρr, ur, pr. The dimensionless variables are given as,

x̂ =
x

xr
, t̂ =

t

tr
, ρ̂ =

ρ

ρr
, û =

u

ur
, p̂ =

p

pr
. (4.3)

Inserting these into (4.1) and (4.2) and omitting the hat, we obtain the dimensionless barotropic

Euler system,

∂tρ+∇ · (ρu) = 0 (4.4)

∂t(ρu) +∇ · (ρu⊗ u) +
1

ϵ2
∇p(ρ) = 0, (4.5)

where ϵ = ur
√
ρr/pr is proportional to the Mach number. This system is also hyperbolic, and

its eigenvalues (in direction n) are u · n − c/ϵ and u · n + c/ϵ. Hereafter, we consider the

dimensionless form of barotropic Euler system in (4.4) and (4.5) for the presentation of analysis

and numerical methods.
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4.2.2 Entropy stability property

Most hyperbolic systems in general have entropy inequality associated with them. In this

section, we present the entropy inequality corresponding to the system in (4.4) and (4.5).

As we will see in what follows, the physical energy plays the role of (mathematical) entropy.

Consequently, the entropy inequality reduces to the energy dissipation property.

Let U = [ρ, ρu1, . . . , ρud]
T be the vector of conserved variables and Gk(U) = [ρuk, pδk1/ϵ

2 +

ρu1uk, . . . , pδkd/ϵ
2 + ρuduk]

T be its flux vector in kth direction. Here ui is the i
th component of

fluid velocity u. In this notation, the barotropic Euler system in (4.4) and (4.5) can be recast

as:

∂tU+ ∂xk
Gk(U) = 0. (4.6)

The convex function,

η(U) =
1

2
ρ∥u∥22 +

1

ϵ2
p(ρ)

γ − 1
(4.7)

is an entropy for the system (4.6) as it satisfies,

η′′(U) ·
(
Gk
)′
(U) is symmetric ⇐⇒ (ωk)

′ (U) = η′(U) ·
(
Gk
)′
(U). (4.8)

Here ωk is the kth component of the entropy flux function ω(U) = u (η(U) + p(ρ)/ϵ2) corre-

sponding to η(U). For sufficiently smooth solutions, the inner product of (4.6) with η′(U) gives

entropy equality

∂tη(U) + ∂xk
ωk(U) = 0. (4.9)

For weak (non-smooth) solutions, we only get

∂tη(U) + ∂xk
ωk(U) ≤ 0 (4.10)

due to the convexity of η(U). Note that (4.10) is understood in the distributional sense.

4.2.3 Asymptotic limit

Our aim in this section is to define a limiting system of (4.4), (4.5) as ϵ→ 0. We point out that

all calculations presented below are formal assuming enough regularity of the corresponding

solutions. We assume that solutions can be expanded with respect to ϵ−powers as follows:

ρ = ρ0 + ϵρ1 + ϵ2ρ2 + . . . , (4.11)

u = u0 + ϵu1 + ϵ2u2 + . . . , (4.12)
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p = p0 + ϵp1 + ϵ2p2 + . . . (4.13)

The asymptotic behavior as ϵ→ 0 is determined by inserting (4.11), (4.12) and (4.13) into the

system in (4.4) and (4.5). Balancing O(ϵ−2) terms in the momentum conservation equation, we

obtain,

∇p0 = 0.

Hence, p0 is spatially constant and is function of time alone. Since p0 = κργ0 , ρ0 is also spatially

constant and is function of time alone. Similarly balancing O(ϵ−1) terms in the momentum

conservation equation, we infer that p1 and ρ1 are also spatial constants and are functions of

only time. Now, balancing O(1) terms in both mass and momentum conservation equations,

we get,

∂tρ0 + ρ0∇ · u0 = 0, (4.14)

∂t(ρ0u0) + ρ0∇ · (u0 ⊗ u0) +∇p2 = 0. (4.15)

Here p2 is interpreted as the hydrostatic pressure. Integrating the O(1) mass balance in (4.14)

on Ω, we get,

|Ω|∂tρ0 = −ρ0
∫
Ω

∇ · u0dΩ = −ρ0
∫
∂Ω

u0 · nds. (4.16)

Taking u · n = 0 on ∂Ω or considering periodic boundary conditions, we get
∫
∂Ω

u0 · nds = 0.

Thus, ∂tρ0 = 0 and ρ0 is constant in both space and time, resulting in ∇ · u0 = 0 according to

(4.14). The O(1) momentum balance in (4.15) therefore becomes,

∂tu0 +∇ · (u0 ⊗ u0) +
∇p2
ρ0

= 0. (4.17)

Similarly, integration of O(ϵ) mass balance equation and usage of u · n = 0 on ∂Ω or periodic

boundary conditions result in ∂tρ1 = 0, and hence ρ1 is constant in both space and time.

Further, the initial conditions are assumed to be compatible with the equations of different or-

ders of ϵ (such as, ϵ−2, ϵ−1, ϵ0). In this chapter, we consider the well-prepared initial conditions,

i.e.

ρ(x, 0) = ρ0(x) = ρ00 + ϵ2ρ02(x) (4.18)

u(x, 0) = u0(x) = u00(x) + ϵu01(x) (4.19)

such that ρ00 is constant and ∇ · u0
0 = 0.
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4.3 Numerical method

In this section, we want to construct a numerical method that is both asymptotic preserving and

entropy stable. That is, we expect the method to satisfy the asymptotic limits of dimensionless

barotropic Euler system in (4.4) and (4.5) as ϵ→ 0, and also satisfy discrete entropy inequality

in different regimes of ϵ. To achieve this goal, we use implicit-explicit (IMEX) time discretisation

required for attaining asymptotic consistency, and compare the entropy stability property of

three different types of space discretisation in different regimes of ϵ. We also present the

asymptotic preserving property of considered numerical methods.

4.3.1 Semi-discrete IMEX time discretisation

We begin with the presentation of first order IMEX time discretisation of the barotropic Euler

system in (4.4) and (4.5) for clarity.

ρn+1 = ρn −∆tn∇ · (ρu)n+1 (4.20)

(ρu)n+1 = (ρu)n −∆tn∇ · (ρu⊗ u)n − ∆tn
ϵ2

∇p(ρ)n+1 (4.21)

Here, ∆tn = tn+1 − tn. The mass flux ∇ · (ρu) and the pressure term 1
ϵ2
∇p(ρ) are treated

implicitly, while ∇ · (ρu ⊗ u) in the momentum flux is treated explicitly. It is important to

treat the mass flux implicitly in order to get ∇ · un+1 = 0 as O(1) constraint. Indeed, if the

mass flux is treated explicitly, then the whole method would become explicit and require severe

ϵ dependent time step restriction enforced by stability.

Substituting the momentum equation (4.21) in ∇ · (ρu)n+1 of (4.20), we get,

ρn+1 = ρn −∆tn∇ · (ρu)n +∆t2n∇2 : (ρu⊗ u)n +
∆t2n
ϵ2

∆p(ρ)n+1. (4.22)

Since p(ρ) = κργ, the presence of ∆p(ρ)n+1 in the above equation calls for a need to use the non-

linear iterative solver to find ρn+1. To avoid the computational effort, we perform linearisation

of p(ρ)n+1 around the incompressible constant density ρ0 as:

p(ρ)n+1 = p(ρ0) + (ρn+1 − ρ0)p
′(ρ)|ρ=ρ0 + O(ϵ4). (4.23)

The above linearisation is true if the higher derivatives of p are O(1) and the method is asymp-

totic preserving (that is, (ρn+1 − ρ0) ≃ O(ϵ2)). We intend to construct our method such that

it is asymptotic preserving, and we have used this information apriori in the linearisation of
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p(ρ)n+1. Using this linearisation in (4.22), we get,

ρn+1 = ρn −∆tn∇ · (ρu)n +∆t2n∇2 : (ρu⊗ u)n +
∆t2n
ϵ2

p′(ρ)|ρ=ρ0∆ρ
n+1 + O(∆t2nϵ

2). (4.24)

In a crude sense, the modified or equivalent partial differential equation of the above time

discrete equation is,

∂tρ = −∇ · (ρu)n+1 + O(∆tn) + O(∆tnϵ
2).

Thus, the first order temporal accuracy of the method remains unaffected due to the linearisa-

tion as long as O(ϵ2) ≤ O(1). The higher derivatives are considered to be O(1) in this argument.

As indicated by (4.24), (4.21), we have split the part governed by the acoustic waves from the

rest non-stiff part. The later models the nonlinear advection waves.

From the algorithmic viewpoint, (4.24) can be solved easily by inversion of a matrix as follows,

ρn+1 =

(
I −

(
∆tn
ϵ

)2

p′(ρ)|ρ=ρ0∆

)−1 (
ρn −∆tn∇ · (ρu)n +∆t2n∇2 : (ρu⊗ u)n

)
. (4.25)

Then, ρn+1 evaluated as above is used to find p(ρ)n+1. Inserting this into (4.21), we get (ρu)n+1

and thus the algorithm is complete. (4.25) and (4.21) together form the update equations for

first order time semi-discrete scheme.

Next, we present the higher order IMEX Runge Kutta (IMEX-RK) time discretisation of

the barotropic Euler system in (4.4) and (4.5). An IMEX-RK time discretisation is represented

by the following double Butcher tableau:

c̃ Ã

b̃T

c A

bT
(4.26)

where Ã = (ãij), A = (aij) ∈ Rs×s; c, c̃, b, b̃ ∈ Rs. The matrices Ã, A correspond to explicit

(strictly lower triangular matrix with diagonal elements as 0) and implicit (lower triangular

with non-zero diagonal elements) parts of the scheme. Such A are known as diagonally implicit

matrices. The coefficients c̃ and c are given by

c̃i =
i−1∑
j=1

ãij, ci =
i∑

j=1

aij, (4.27)

and the vectors b̃ = (b̃j) and b = (bj) give quadrature weights that combine the stages. For
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AP schemes, it turns to be important to work with globally stiffly accurate (GSA) IMEX-RK

scheme that satisfies the following property:

cs = c̃s = 1 and asj = bj, ãsj = b̃j, ∀j ∈ {1, 2, . . . , s}. (4.28)

The GSA property ensures that the update at tn+1 is same as the update at sth stage.

The ith stage update (for i ∈ {1, 2, . . . , s}) of the barotropic Euler system in (4.4) and (4.5) is

given by,

ρi = ρn −∆tn

i∑
j=1

aij∇ · (ρu)j (4.29)

(ρu)i = (ρu)n −∆tn

i−1∑
j=1

ãij∇ · (ρu⊗ u)j − ∆tn
ϵ2

i∑
j=1

aij∇p(ρ)j (4.30)

where ∆tn = tn+1 − tn. Substituting the momentum equation (4.30) in ∇ · (ρu)i of (4.29), we
get,

ρi = ρn−∆tn

i−1∑
j=1

aij∇·(ρu)j−∆tnaii∇·(ρu)n+∆t2naii

i−1∑
j=1

ãij∇2 : (ρu⊗u)j+
∆t2n
ϵ2

aii

i∑
j=1

aij∆p(ρ)
j.

(4.31)

The above equation requires a nonlinear solver to find ρi. Similar to first order method, we

perform linearisation around incompressible constant density ρ0:

p(ρ)i = p(ρ0) + (ρi − ρ0)p
′(ρ)|ρ=ρ0 + O(ϵ4). (4.32)

The asymptotic preserving property ((ρi − ρ0) ≃ O(ϵ2)) of the method is used a priori in the

linearisation. Plugging in (4.31) yields,

ρi =

(
I −

(
∆tn
ϵ

)2

a2iip
′(ρ)|ρ=ρ0∆

)−1(
ρn −∆tn

i−1∑
j=1

aij∇ · (ρu)j −∆tnaii∇ · (ρu)n

+∆t2naii

i−1∑
j=1

ãij∇2 : (ρu⊗ u)j +
∆t2n
ϵ2

aii

i−1∑
j=1

aijp
′(ρ)|ρ=ρ0∆ρ

j

)
. (4.33)

Then, ρi evaluated as above is used to find p(ρ)i. Inserting this into (4.30), we get (ρu)i and

thus the evaluation of stage values is complete. (4.33) and (4.30) together form the stage

update equations for higher order IMEX-RK time semi-discrete scheme. Further, ρn+1 = ρs
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and (ρu)n+1 = (ρu)s due to the GSA property and therefore the algorithm is complete.

4.3.2 Asymptotic preserving property of the time semi-discrete scheme

In this section, we show that the higher order GSA IMEX-RK time semi-discrete scheme (4.31)

and (4.30) is asymptotic preserving.

Theorem 4.1 Assume well-prepared initial conditions in (4.18) and (4.19), the asymptotic

expansion ansatz in (4.11)-(4.13), and periodic boundary conditions on ρ and u. Then the time

semi-discrete GSA IMEX-RK scheme given by (4.31) and (4.30) satisfies for ϵ→ 0

ρi0 ≡ constant , ρi1 ≡ constant , ρi0 + ϵρi1 = ρ0, (4.34)

∇ · ui
0 = 0, (4.35)

ui
0 = un

0 −∆tn

i−1∑
j=1

ãij∇ · (u0 ⊗ u0)
j − ∆tn

ρ0

i∑
j=1

aij∇pj2, (4.36)

for all i ∈ {1, 2, . . . , s}, which is a consistent approximation of the incompressible Euler system

(4.14), (4.15).

Proof: Inserting the asymptotic ansatz (4.11)-(4.13) into the momentum update equation

(4.30) and equating O
(

1
ϵ2

)
terms, we obtain

∆tn

i∑
j=1

aij∇pj0 = 0, for all i ∈ {1, 2, . . . , s} =⇒ ∇pi0 = 0, for all i ∈ {1, 2, . . . , s}.

Since pi0 = κρi
γ

0 , ρ
i
0 is spatially constant for all i ∈ {1, 2, . . . , s}. Similarly equating O

(
1
ϵ

)
terms in the momentum update equation (4.30), we infer that ρi1 is spatially constant for all

i ∈ {1, 2, . . . , s}.
Inserting the asymptotic ansatz (4.11)-(4.13) into the mass update equation (4.31) and equating

O (1) terms, we obtain

ρi0 = ρn0−∆tn

i−1∑
j=1

aijρ
j
0∇·(u0)

j−∆tnaiiρ
n
0∇·(u0)

n+∆t2naii

i−1∑
j=1

ãijρ
j
0∇2 : (u0⊗u0)

j+∆t2naii

i∑
j=1

aij∆p
j
2.

(4.37)

Integrating the above equation on Ω and using periodic boundary conditions on ρ2 and u0, we

obtain

ρi0 = ρn0 , for all i ∈ {1, 2, . . . , s}. (4.38)
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Repeating the similar procedure for O (ϵ) terms of the mass update equation (4.31), we obtain,

ρi1 = ρn1 , for all i ∈ {1, 2, . . . , s}. (4.39)

Since ρn+1
0,1 = ρs0,1 due to the GSA property of IMEX-RK time discretisation, we have ρn+1

0,1 =

ρs0,1 = ρn0,1. Therefore, ρ
n
0,1 = ρ00,1 ≡ constant, for all n = 1, 2, . . . .

Inserting this into the O(1) mass and momentum update equations, we get for all i ∈ {1, 2, . . . , s}

i−1∑
j=1

aij∇ · (u0)
j + aii∇ · (u0)

n −∆tnaii

i−1∑
j=1

ãij∇2 : (u0 ⊗ u0)
j − ∆tn

ρ0
aii

i∑
j=1

aij∆p
j
2 = 0, (4.40)

ui
0 = un

0 −∆tn

i−1∑
j=1

ãij∇ · (u0 ⊗ u0)
j − ∆tn

ρ0

i∑
j=1

aij∇pj2, (4.41)

where ρ0 = ρ00 + ϵρ01. Taking divergence of (4.41) and inserting it into (4.40), we obtain

i∑
j=1

aij∇·(u0)
j = 0, for all i ∈ {1, 2, . . . , s} =⇒ ∇·(u0)

i = 0, for all i ∈ {1, 2, . . . , s}. (4.42)

2

The above theorem shows the asymptotic consistency of the IMEX-RK time semi-discrete

scheme. Due to the GSA property, the expressions for ρs0, ρ
s
1, u

s
0 follow for ρn+1

0 , ρn+1
1 , un+1

0 . In

the next section, we explain the discretisation techniques for spatial derivatives present in the

scheme.

4.3.3 Space discretisation

In this section, we discuss various consistent spatial discretisations for the time semi-discrete

scheme proposed above. It is important to keep the numerical diffusion coefficients free of the

small parameter ϵ, in-order to avoid an uncontrollable growth in numerical diffusion term as

ϵ→ 0. In what follows, we present three different types of space discretisation.

We consider the first order time semi-discrete scheme given by (4.25) and (4.21) for presentation

of the spatial discretisation. The discretisation of all the spatial derivatives present in this

scheme will be explained. The corresponding spatial derivatives in higher order time semi-

discrete scheme given by (4.33) and (4.30) will be approximated analogously. The additional

terms
∑i−1

j=1 aij∇ · (ρu)j and
∑i−1

j=1 aij∆p(ρ)
j present in the mass update equation (given by

(4.33)) will also follow the same discretisation as ∇ · (ρu)n and ∆p(ρ)n+1 respectively. For

convenience of presentation, we explain the ideas for one-dimensional setting.
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4.3.3.1 Type 1

We apply an upwind discretisation for ∇ · (ρu ⊗ u)n in the momentum equation (4.21), while

all other first and second derivatives present in the scheme (4.25) and (4.21) are treated in a

central fashion. Since our goal is to achieve entropy stability, we do not add numerical diffusion

to implicit terms as they are entropy stable with central discretisation.

1. Spatial discretisation of ∇ · (ρu ⊗ u)n in momentum equation (4.21) is given by upwind

discretisation

Dupw(ρu⊗ u)k =
1

∆x

(
(ρuu)k+ 1

2
− (ρuu)k− 1

2

)
(4.43)

(ρuu)k+ 1
2
=

{
(ρu)kuk+ 1

2
if uk+ 1

2
> 0

(ρu)k+1uk+ 1
2

if uk+ 1
2
< 0

(4.44)

where uk+ 1
2
= 1

2
(uk + uk+1), k = 1, 2, . . . is an index of spatial discretisation.

2. Spatial discretisation of ∇ · (ρu)n in mass update equation (4.25) and ∇p(ρ)n+1 in mo-

mentum equation (4.21) are given by central finite difference discretisations

Dcen(ρu)k =
1

2∆x
((ρu)k+1 − (ρu)k−1) (4.45)

Dcen(p)k =
1

2∆x
(pk+1 − pk−1) . (4.46)

3. Spatial discretisation of ∇2 : (ρu ⊗ u)n and ∆pn+1 in mass update equation (4.25) are

given by central finite difference discretisations

D2(ρu⊗ u)k =
1

∆x2
((ρuu)k+1 − 2(ρuu)k + (ρuu)k−1) (4.47)

D2(p)k =
1

∆x2
(pk+1 − 2pk + pk−1) , k = 1, 2, . . . . (4.48)

The corresponding terms in higher order time semi-discrete scheme given by (4.33) and (4.30)

also follow the same discretisation as described above.

4.3.3.2 Type 2

All the terms in (4.25) and (4.21) follow the discretisation in type 1, except that the term ∇ ·
(ρu)n in the mass update equation (4.25) is treated in an upwind fashion. Spatial discretisation

95



for ∇ · (ρu)n is given by,

Dupw(ρu)k =
1

∆x

(
(ρu)k+ 1

2
− (ρu)k− 1

2

)
(4.49)

(ρu)k+ 1
2
=

{
ρkuk+ 1

2
if uk+ 1

2
> 0

ρk+1uk+ 1
2

if uk+ 1
2
< 0

(4.50)

where uk+ 1
2
= 1

2
(uk+uk+1). The corresponding terms in higher order time semi-discrete scheme

given by (4.33) and (4.30) also follow the same discretisation as described above.

4.3.3.3 Type 3

Here, all the terms in (4.25) and (4.21) follow the discretisation in type 1, except that the

term ∇ · (ρu ⊗ u)n in momentum equation (4.21) is discretised by using an entropy stable

flux. We apply the entropy conservative flux discretisation, and add numerical diffusion for

attaining entropy stability. We first derive the entropy conserving and stable fluxes for the full

barotropic Euler system, and use only the part of these fluxes corresponding to ∇ · (ρu ⊗ u)n

in momentum equation (4.21). All other first and second derivatives in the scheme (4.25) and

(4.21) are treated in central fashion as in type 1.

In one space dimension, the entropy variable corresponding to the convex entropy function (4.7)

is:

V =
∂η

∂U
=
[
−1

2
u21 +

1
ϵ2

κγ
γ−1

ργ−1 u1

]T
(4.51)

The one-dimensional flux function is, G =
[
ρu1

1
ϵ2
p+ ρu21

]T
. For entropy conservation, we

require (cf. [293, 294, 295])

[V ·G]k+ 1
2
− [V]k+ 1

2
·G∗

k+ 1
2
= [ω]k+ 1

2
(4.52)

where [·]k+ 1
2
= (·)k+1 − (·)k. Thus, we get

[V ·G]k+ 1
2
− [ω]k+ 1

2
=

[
1

ϵ2
2γ − 1

γ − 1
p(ρ)u1 +

1

2
ρu31

]
k+ 1

2

−
[
1

2
ρu31 +

1

ϵ2
γ

γ − 1
p(ρ)u1

]
k+ 1

2

(4.53)

=

[
1

ϵ2
p(ρ)u1

]
k+ 1

2

, (4.54)

[V]k+ 1
2
·G∗

k+ 1
2
= −1

2

[
u21
]
k+ 1

2

(ρu1)
∗
k+ 1

2
+

1

ϵ2
κγ

γ − 1

[
ργ−1

]
k+ 1

2

(ρu1)
∗
k+ 1

2
+

1

ϵ2
[u1]k+ 1

2
p∗
k+ 1

2
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+ [u1]k+ 1
2

(
ρu21
)∗
k+ 1

2

. (4.55)

The following interface flux function

G∗
k+ 1

2
=

 (ρu1)
∗
k+ 1

2(
1
ϵ2
p+ ρu21

)∗
k+ 1

2

 =

 ργ
k+1

2

u1k+ 1
2

1
ϵ2
pk+ 1

2
+ ργ

k+1
2

u1
2
k+ 1

2

 (4.56)

with

ργ
k+1

2

=
γ − 1

γ

[ργ]k+ 1
2

[ργ−1]k+ 1
2

, u1k+ 1
2
=

1

2

(
u1k+1

+ u1k
)
, pk+ 1

2
=

1

2
(pk+1 + pk) (4.57)

satisfies the entropy conserving condition in (4.52). Hence, the entropy conserving spatial

discretisation of ∇ · (ρu⊗ u)n in momentum equation (4.21) is given by

DEC(ρu⊗ u)k =
1

∆x

(
(ρu21)

∗
k+ 1

2
− (ρu21)

∗
k− 1

2

)
(4.58)

(ρu21)
∗
k+ 1

2
= ργ

k+1
2

u1
2
k+ 1

2
. (4.59)

Note that (4.58), (4.59) yield second order accurate approximation.

To achieve entropy stability, we consider a dissipation matrix that is independent of ϵ:

Λ =

[
|u1k+ 1

2
| 0

0 |u1k+ 1
2
|

]
. (4.60)

Thus, the entropy stable flux for full barotropic Euler system becomes,

Gk+ 1
2
= G∗

k+ 1
2
− q

2
Λ [V]k+ 1

2
(4.61)

where q > 0 is a suitable constant. This entropy stable flux results in first order spatial accuracy.

For second order accuracy, we use (cf. [118])

Gk+ 1
2
= G∗

k+ 1
2
− q

2
Λ ⟨⟨V⟩⟩k+ 1

2
(4.62)

⟨⟨V⟩⟩k+ 1
2
= [V]k+ 1

2
− 1

2

(
µ
(
[V]k+ 1

2
, [V]k+ 3

2

)
+ µ

(
[V]k− 1

2
, [V]k+ 1

2

))
(4.63)

µ (A,B) =

{
smin (|A|, |B|) if s = sign(A) = sign(B)

0 otherwise
. (4.64)
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Thus, the entropy stable spatial discretisation of ∇ · (ρu ⊗ u)n in momentum equation (4.21)

is given by,

DES(ρu⊗ u)k =
1

∆x

(
(ρu21)k+ 1

2
− (ρu21)k− 1

2

)
(4.65)

(ρu21)k+ 1
2
= (ρu21)

∗
k+ 1

2
− q

2
|u1k+ 1

2
|

{
[u1]k+ 1

2

⟨⟨u1⟩⟩k+ 1
2

=


|u1k+ 1

2
|
(
ργ

k+1
2

|u1k+ 1
2
| − q

2
[u1]k+ 1

2

)
, 1st order

|u1k+ 1
2
|
(
ργ

k+1
2

|u1k+ 1
2
| − q

2
⟨⟨u1⟩⟩k+ 1

2

)
, 2nd order

(4.66)

Hence, in this type, ∇·(ρu⊗u)n in momentum equation (4.21) is discretised as shown in (4.65)-

(4.66). All the other first and second derivatives present in (4.25) and (4.21) are discretised in

central fashion as shown in type 1.

The corresponding terms in higher order time semi-discrete scheme given by (4.33) and (4.30)

also follow the same discretisation as described above.

4.3.4 Asymptotic preserving property of the fully discrete scheme

In this section, we show the asymptotic consistency of our fully discrete scheme as ϵ → 0. For

this, we present a general theorem that considers all the three types of spatial discretisation.

Theorem 4.2 Assume well-prepared initial conditions in (4.18) and (4.19), the asymptotic

expansion ansatz in (4.11)-(4.13), and periodic boundary conditions on ρ and u1. Consider the

fully discrete scheme

ρik = ρnk −∆tn

i−1∑
j=1

aijD(ρu1)
j
k −∆tnaiiD(ρu1)

n
k +∆t2naii

i−1∑
j=1

ãijD
2(ρu21)

j
k +

∆t2n
ϵ2

aii

i∑
j=1

aijD
2(p)jk

(4.67)

(ρu1)
i
k = (ρu1)

n
k −∆tn

i−1∑
j=1

ãijDupw/ES · (ρu21)
j
k −

∆tn
ϵ2

i∑
j=1

aijDcen(p)
j
k (4.68)

with D = Dcen/upw. Then for ϵ→ 0, a solution of (4.67), (4.68) satisfies

ρi0k ≡ constant , ρi1k ≡ constant , ρi0k + ϵρi1k = ρ0, (4.69)

(u10)
i
k = (u10)

n
k −∆tn

i−1∑
j=1

ãijDupw/ES(u
2
10
)jk −

∆tn
ρ0

i∑
j=1

aijDcen(p2)
j
k, (4.70)

for all k = 1, 2, . . . , and all i ∈ {1, 2, . . . , s}.
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Proof: Substituting the asymptotic ansatz into the momentum update equation in (4.68)

and equating O
(

1
ϵ2

)
terms, we get

i∑
j=1

aijDcen(p0)
j
k = 0, for all i ∈ {1, 2, . . . , s} =⇒ Dcen(p0)

i
k = 0, for all i ∈ {1, 2, . . . , s}.

(4.71)

Note that this property does not allow us to conclude that (p0)
i
k is spatially constant. Depending

on boundary conditions, checkerboard modes could occur. In order to conclude that (p0)
i
k is

spatially constant, we consider a ghost point on the left and impose p0ghost = (p0)k=0. Then,

(p0)
i
k is spatially constant and hence (ρ0)

i
k is also spatially constant since (p0)

i
k = κ ((ρ0)

i
k)

γ
.

Similarly equating O
(
1
ϵ

)
terms in the momentum balance (4.68), we infer that (ρ1)

i
k is spatially

constant.

Inserting the asymptotic ansatz into the mass update equation in (4.67) and equating O(1)

terms, we obtain,

ρi0k = ρn0k−∆tn

i−1∑
j=1

aijρ
j
0k
D(u10)

j
k−∆tnaiiρ

n
0k
D(u10)

n
k+∆t2naii

i−1∑
j=1

ãijρ
j
0k
D2(u210)

j
k+∆t2naii

i∑
j=1

aijD
2(p2)

j
k.

(4.72)

Summing over all the points in the domain and using periodic boundary conditions on ρ2 and

u10 , we obtain,

ρi0k = ρn0k , for all k, for all i ∈ {1, 2, . . . , s}. (4.73)

Repeating the similar procedure for O (ϵ) terms of the mass update equation (4.67), we obtain,

ρi1k = ρn1k , for all k, for all i ∈ {1, 2, . . . , s}. (4.74)

Since ρn+1
0,1k

= ρs0,1k due to the GSA property of IMEX-RK time discretisation, we have ρn+1
0,1k

=

ρs0,1k = ρn0,1k . Therefore, ρ
n
0,1k

= ρ00,1k ≡ constant, for all n = 1, 2, . . . .

Inserting this into the O(1) mass and momentum update equations, we get for all i ∈ {1, 2, . . . , s},

i−1∑
j=1

aijD(u10)
j
k + aiiD(u10)

n
k −∆tnaii

i−1∑
j=1

ãijD
2(u210)

j
k −

∆tn
ρ0

aii

i∑
j=1

aijD
2(p2)

j
k = 0, (4.75)

(u10)
i
k = (u10)

n
k −∆tn

i−1∑
j=1

ãijDupw/ES(u
2
10
)jk −

∆tn
ρ0

i∑
j=1

aijDcen(p2)
j
k, (4.76)

where ρ0 = ρ00k + ϵρ01k , for any k = 1, 2, . . . . 2
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Due to the GSA property, the expressions for ρs0k , ρ
s
1k
, (u10)

s
k follow for ρn+1

0k
, ρn+1

1k
, (u10)

n+1
k ,

for all k = 1, 2, . . . . Thus, we have devised an asymptotic preserving IMEX-RK scheme with

three different types of space discretisation techniques.

4.4 Numerical results and discussion

In this section, we present the numerical results obtained from our asymptotic preserving IMEX-

RK scheme with three different types of spatial discretisation. The numerical results include:

entropy, potential energy (PE), kinetic energy (KE) plots and accuracy tables of a standard

periodic problem for different values of ϵ; entropy, density and momentum plots for colliding

acoustic waves and Riemann problems; entropy, PE, KE and Mach ratio plots for Gresho vortex

problems.

4.4.1 Standard periodic problem

The domain of the problem is Ω := [0, 1], and the initial conditions are:

ρ0(x) = 1 + ϵ2 sin (2πx) (4.77)

u10(x) = 1 + ϵ sin (2πx) (4.78)

The parametric values are: κ = 1 and γ = 2. The entropy plots and accuracy tables of this

problem will be presented for different values of ϵ.

4.4.1.1 Entropy, kinetic energy (KE) and potential energy (PE)

The domain Ω is discretised into N = 20 grid points. The first order IMEX scheme ARS(1, 1, 1)

is used along with three types of spatial discretisation techniques to obtain the plots on entropy,

KE and PE. The time step is chosen as:

∆tn = C
∆x

2max
i∈ΩN

(un1i)
(4.79)

where the CFL number, C = 0.4 and ΩN is the discretised set of the domain Ω (that is,

ΩN = {1, 2, . . . , N}).
Figures 4.1, 4.2 and 4.3 show the entropy, KE and PE plots obtained for ϵ = 0.5, 0.1 and

10−4 respectively by using type 1, type 2 and type 3 (entropy conserving) spatial discretisation
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(a) Entropy - Type 1 (b) KE - Type 1 (c) PE - Type 1

(d) Entropy - Type 2 (e) KE - Type 2 (f) PE - Type 2

(g) Entropy - Type 3 (h) KE - Type 3 (i) PE - Type 3

Figure 4.1: Entropy, KE and PE plots for ϵ = 0.5 using space discretisation types 1,2 and 3

techniques. The global value of the convex entropy function at time tn is given by,

ηn = KEn + PEn, where KEn =
1

N

N∑
k=1

1

2
ρnk
(
un1k
)2
, PEn =

1

N

N∑
k=1

1

ϵ2
pnk

γ − 1
(4.80)

The plots are obtained at time T = 5 to depict the long time behaviours of entropy, KE and

PE.

ϵ = 0.5 : Decaying oscillations are observed in both KE and PE for all the three types of spatial

discretisations.

ϵ = 0.1 : Both KE and PE are oscillating during the initial transience before becoming constant,

for all the three types of spatial discretisations.

ϵ = 0.0001 : PE decreases while KE remains almost constant for all the three types of spatial

discretisations.
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(a) Entropy - Type 1 (b) KE - Type 1 (c) PE - Type 1

(d) Entropy - Type 2 (e) KE - Type 2 (f) PE - Type 2

(g) Entropy - Type 3 (h) KE - Type 3 (i) PE - Type 3

Figure 4.2: Entropy, KE and PE plots for ϵ = 0.1 using space discretisation types 1,2 and 3

4.4.1.2 Order of accuracy

In this subsection, we show the order of accuracy of type 3 entropy conserving spatial dis-

cretisation (that is second order accurate in space) paired with ARS(1, 1, 1) (in table 4.1) and

ARS(2, 2, 2) (in table 4.2) IMEX time discretisations that are respectively first and second

order accurate in time. We observe the order of accuracy of density ρ by using different number

of grid points: N = 20, 24, 30, 40, 60. The reference solution is obtained with N = 120. The

time step is chosen according to (4.79) with CFL number, C = 0.4.

For ϵ = 0.5, both ARS(1, 1, 1) and ARS(2, 2, 2) give the required order of accuracy. For

ϵ = 10−4, both ARS(1, 1, 1) and ARS(2, 2, 2) show very small errors of O(10−10) and O(10−9)

respectively for all tested values of N . This indicates that the error in ρ is of O(ϵ2), and thus

our scheme is asymptotic preserving. For ϵ = 0.1, ARS(1, 1, 1) gives required order of accuracy

whereas degeneracy is observed for large N while using ARS(2, 2, 2). Such degeneracy in the

intermediate regime is commonly observed in literature due to the lack of uniform stability of
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(a) Entropy - Type 1 (b) KE - Type 1 (c) PE - Type 1

(d) Entropy - Type 2 (e) KE - Type 2 (f) PE - Type 2

(g) Entropy - Type 3 (h) KE - Type 3 (i) PE - Type 3

Figure 4.3: Entropy, KE and PE plots for ϵ = 0.0001 using space discretisation types 1,2 and 3

IMEX time discretisations involved.

4.4.2 Colliding acoustic waves problem

The domain of the problem is Ω = [−1, 1], and the initial conditions are:

ρ0(x) = 0.955 + 0.5ϵ (1− cos (2πx)) (4.81)

u10(x) = −sign(x)
√
γ (1− cos (2πx)) (4.82)

The parametric values are: κ = 1, γ = 1.4 and ϵ = 0.1. It is to be noted that the initial

condition is not well-prepared. Periodic boundary conditions are used for this problem. Density,

momentum and global entropy (vs. time) plots are presented for different values of final time,

T = 0.04, 0.06, 0.08. ARS(1, 1, 1) IMEX time discretisation is used. Figures 4.4, 4.5 and 4.6

show the plots obtained by using type 1, type 2 and type 3 space discretisations respectively.
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N ∆x
ϵ =

0.5, ||ρ||L2

ϵ =
0.5, EOC

ϵ =
0.1, ||ρ||L2

ϵ =
0.1, EOC

ϵ =
10−4, ||ρ||L2

ϵ =
10−4, EOC

20 0.0526 0.00546 - 0.000185 -
3.9

×10−11 -

24 0.0435 0.00370 2.025 0.000149 1.136
3.6

×10−11 0.426

30 0.0435 0.00257 1.568
9.3

×10−5 2.015
3.1

×10−10 -9.28

40 0.0256 0.00143 1.992 6 ×10−5 1.525
8.0

×10−11 4.549

60 0.0169 0.000521 2.432
3.6

×10−5 1.200
3.8

×10−11 1.809

Table 4.1: EOC for ARS(1, 1, 1) coupled with spatially 2nd order accurate type 3 discretisation

N ∆x
ϵ =

0.5, ||ρ||L2

ϵ =
0.5, EOC

ϵ =
0.1, ||ρ||L2

ϵ =
0.1, EOC

ϵ =
10−4, ||ρ||L2

ϵ =
10−4, EOC

20 0.0526 0.00597 - 0.000201 -
2.1

×10−9 -

24 0.0435 0.00416 1.886 0.000111 3.078
1.9

×10−9 0.516

30 0.0435 0.00272 1.839
6.3

×10−5 2.447
1.7

×10−9 0.488

40 0.0256 0.00160 1.788
4.2

×10−5 1.413
1.5

×10−9 0.494

60 0.0169 0.00070 2.008
2.5

×10−5 1.214
1.3

×10−9 0.383

Table 4.2: EOC for ARS(2, 2, 2) coupled with spatially 2nd order accurate type 3 discretisation
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(a) T = 0.04 (b) T = 0.06 (c) T = 0.08

Figure 4.4: Colliding acoustic waves problem with ϵ = 0.1 using type 1 space discretisation.
The reference is 2nd order type 3 entropy stable space discretisation with q = 7, N = 1000 and

classical time-step ∆t′n.

The reference solution for all the cases is obtained by using type 3 space discretisation which

is second order accurate in space, with N = 1000 and the classical time step

∆t′n = C
∆x

2max
i∈ΩN

(
|un1i |+

cni
ϵ

) . (4.83)

No significant difference is observed between the three types of space discretisation, except that

the type 3 discretisation is slightly more accurate compared to the other two types owing to its

second order accuracy in space.

4.4.3 Riemann problem

This problem is from [81]. The domain is Ω = [0, 1] and the initial conditions are:

ρ0(x) = 1, (ρu1)0 (x) = 1− ϵ2/2, if x ∈ [0, 0.2] ∪ [0.8, 1] (4.84)
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(a) T = 0.04 (b) T = 0.06 (c) T = 0.08

Figure 4.5: Colliding acoustic waves problem with ϵ = 0.1 using type 2 space discretisation.
The reference is 2nd order type 3 entropy stable space discretisation with q = 7, N = 1000 and

classical time-step ∆t′n.

ρ0(x) = 1 + ϵ2, (ρu1)0 (x) = 1, if x ∈ (0.2, 0.3] (4.85)

ρ0(x) = 1, (ρu1)0 (x) = 1 + ϵ2/2, if x ∈ (0.3, 0.7] (4.86)

ρ0(x) = 1− ϵ2, (ρu1)0 (x) = 1, if x ∈ (0.7, 0.8] (4.87)

The parametric values are: κ = 1 and γ = 2. Periodic boundary conditions are used for this

problem. Density, momentum and global entropy (vs. time) plots are presented at T = 0.05

for different values of ϵ, such as ϵ = 0.8, 0.3, 0.05. ARS(1, 1, 1) IMEX time discretisation is

used. Figures 4.7, 4.8 and 4.9 show the plots obtained by using type-2, type-3 1st and 2nd

order entropy stable space discretisations respectively. The reference solution for all the cases

is obtained by using type-3 first order accurate entropy stable space discretisation with q = 7,

N = 1000 and the classical time step ∆t′n in (4.83).
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(a) T = 0.04 (b) T = 0.06 (c) T = 0.08

(d) T = 0.04 (e) T = 0.06 (f) T = 0.08

Figure 4.6: Colliding acoustic waves problem with ϵ = 0.1 using 2nd order type 3 entropy
stable space discretisation with q = 7. The reference is the same scheme with N = 1000 and

classical time-step ∆t′n.

4.4.4 Gresho vortex problem

This problem is from [138, 265]. A vortex of radius R = 0.4 centered at (x10 , x20) = (0.5, 0.5)

is considered at initial time t = 0. The initial background state is considered as: ρ0 = 1,

u0 = (u10 , 0)
T , p0 = 1 and hence a0 =

√
γp0
ρ0

=
√
γ. The flow velocity is then given by

u10 = ϵ0a0, where ϵ0 is the global Mach number.

The radial velocity of the vortex is

ur(r) = u10


2 r
R

if 0 ≤ r < R
2

2
(
1− r

R

)
if R

2
≤ r < R

0 if r ≥ R

,
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(a) ϵ = 0.8 (b) ϵ = 0.3 (c) ϵ = 0.05

Figure 4.7: Riemann problem at T = 0.05 using type 2 space discretisation. The reference is
1st order type 3 space discretisation with q = 7, N = 1000 and classical time-step ∆t′n.

and the velocity components in Cartesian coordinates are

u1(x1, x2) = u10 −
x2 − x20

r
ur, u2(x1, x2) =

x1 − x10
r

ur.

Here, r =
√

(x1 − 0.5)2 + (x2 − 0.5)2. Upon balancing the pressure gradient and centrifugal

force
(
i.e., ρ0

u2
r

r
= ∂p

∂r

)
, pressure is derived as:

p(r) = p0 + u20


2 r2

R2 + 2− log 16 if 0 ≤ r < R
2

2 r2

R2 − 8 r
R
+ 4 log

(
r
R

)
+ 6 if R

2
≤ r < R

0 if r ≥ R

.

We assume adiabatic compression p = ργ with γ = 1.4, and use the asymptotic ansatz:

p = p0 + u210p2, ρ = ρ0 + u210ρ2. Comparing ∂p
∂u10

= 2u10p2 and ∂p
∂u10

= ∂p
∂ρ

∂ρ
∂u10

= γp
ρ
2u10ρ2,

we obtain ρ2 =
p2
γ
by noting that p = 1, ρ = 1 up-to leading order. This ρ2 is used in the initial
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(a) ϵ = 0.8 (b) ϵ = 0.3 (c) ϵ = 0.05

Figure 4.8: Riemann problem at T = 0.05 using 1st order type 3 space discretisation with
q = 7. The reference is the same scheme with N = 1000 and classical time-step ∆t′n.

condition.

Periodic boundary conditions are imposed in both directions, and the mesh size used is Nx×
Ny = 100 × 100. The problem is simulated using space discretisation type 2 for ϵ0 =

0.1, 0.01, 0.001. The following quantities are observed:

η = 1/2 ρ(u2x + u2y) + (1/ϵ2)p/(γ − 1), PE = (1/ϵ2)p/(γ − 1), (4.88)

KE = (ux − uxinf
)2 + u2y where uxinf

is the the background velocity (4.89)

Ma ratio =
1

ϵ0

√(ux − uxinf
)2 + u2y

γp/ρ

 (4.90)

Figure 4.10 shows the evolution of entropy (η), KE, PE over time upto T = Rπ and Ma ratio

contours at T = Rπ.
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(a) ϵ = 0.8 (b) ϵ = 0.3 (c) ϵ = 0.05

Figure 4.9: Riemann problem at T = 0.05 using 2nd order type 3 space discretisation with
q = 7. The reference is 1st order type 3 space discretisation with q = 7, N = 1000 and

classical time-step ∆t′n.

4.5 Summary and Conclusions

In this chapter, the entropy inequality corresponding to convex entropy function depending on

Mach number ϵ has been derived for the baratropic Euler system. Further, numerical schemes

satisfying such an entropy stability for different values of ϵ have been developed by using

IMEX-AP time discretisation and three space discretisation strategies. The entropy stability

and asymptotic preserving properties of the methods have been validated numerically.

110



(a) Entropy, ϵ = 0.1 (b) KE, ϵ = 0.1 (c) PE, ϵ = 0.1 (d) Ma ratio, ϵ = 0.1

(e) Entropy, ϵ =
0.01 (f) KE, ϵ = 0.01 (g) PE, ϵ = 0.01

(h) Ma ratio, ϵ =
0.01

(i) Entropy, ϵ =
0.001 (j) KE, ϵ = 0.001 (k) PE, ϵ = 0.001

(l) Ma ratio, ϵ =
0.001

Figure 4.10: Entropy, KE, PE and Ma ratio plots using space discretisation type 2 for
ϵ = 0.1, 0.01, 0.001 on 100× 100 grid

4.A Appendix: Butcher tableau

The first order type CK-ARS double Butcher tableau (known as ARS(1, 1, 1)) is:

0 0 0

1 1 0

1 0

0 0 0

1 0 1

0 1

(4.91)

The following is the 2-stage second order accurate Butcher tableau ARS(2, 2, 2):

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

0 0 0 0

γ 0 γ 0

1 0 1−γ γ

0 1−γ γ
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Here, γ = 1− 1√
2
and δ = 1− 1

2γ
.
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Chapter 5

On Lattice Boltzmann Methods based

on vector-kinetic models for hyperbolic

partial differential equations

In this chapter, we are concerned about the lattice Boltzmann methods (LBMs) based on

vector-kinetic models for hyperbolic partial differential equations. In addition to usual lattice

Boltzmann equation (LBE) derived by explicit discretisation of vector-kinetic equation (VKE),

we also consider LBE derived by semi-implicit discretisation of VKE and compare the relaxation

factors of both. We study the properties such as H-inequality, total variation boundedness and

positivity of both the LBEs, and infer that the LBE due to semi-implicit discretisation naturally

satisfies all the properties while the LBE due to explicit discretisation requires more restrictive

condition on relaxation factor compared to the usual condition obtained from Chapman-Enskog

expansion. We also derive the macroscopic finite difference form of the LBEs, and utilise it

to establish the consistency of LBEs with the hyperbolic system. Further, we extend this

LBM framework to hyperbolic conservation laws with source terms, such that there is no

spurious numerical convection due to imbalance between convection and source terms. We also

present a D2Q9 model that allows upwinding even along diagonal directions in addition to the

usual upwinding along coordinate directions. The different aspects of the results are validated

numerically on standard benchmark problems.

5.1 Introduction

Lattice Boltzmann methods (LBMs) have emerged as a powerful and versatile class of compu-

tational techniques for simulating fluid flow and related phenomena. Over the years, they have
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gained significant popularity due to their ability to handle a wide range of fluid flow scenarios,

from incompressible flows ([327, 246, 154]) to complex multiphase ([139, 247, 42, 110, 204]) and

multiscale ([310]) systems. LBMs have been employed for modelling and simulating problems in

magnetohydrodynamics ([214, 238, 279, 150]), porous media ([29, 141, 142, 109]), heat transfer

([219, 225, 303]) and turbulence ([184, 144]). The reader is referred to the books [220, 290, 140]

for extensive study of LBMs, [59] for review of LBMs for fluid flows, [8] for review of LBMs for

heat transfer, and [153] for review of entropic LBMs.

The Lattice Boltzmann equation (LBE) has been shown to approximate the Euler and the

Navier-Stokes equations through different approaches such as Chapman-Enskog expansion ([190,

129, 335]), asymptotic expansion ([157, 175, 176]), Maxwellian iteration ([13, 26, 329]), equiv-

alent equation ([100]), and recursive representation ([152]). Some notions of stability, includ-

ing non-negativity of particle distribution function, of algorithms based on LBE were studied

([128, 101, 102]. Various attempts have been made in which the LBE is shown to be equiv-

alent to mutistep finite difference equation ([291, 83, 103, 120, 24]), and the consistency with

macroscopic equations has been shown in [23]. Further, the linkage between LBM and relax-

ation systems of [173] has been explored in [16, 262] and is being investigated frequently in

[136, 282, 283].

While the discussions above correspond to the LBE derived from discretisation of the Boltz-

mann equation (essentially scalar-kinetic equation) with discrete velocities, we consider the

class of LBEs derived from discretisation of vector-kinetic equations introduced in [43, 44, 7].

The vector-kinetic models have been utilised to develop various numerical schemes in the ar-

eas of porous media [174], entropy stable methods for hyperbolic systems [5], implicit kinetic

relaxation schemes [69], and lattice Boltzmann relaxation schemes [254, 84, 270]. In particu-

lar, [69] and [254] present the lattice Boltzmann methods with different equilibrium functions

and their resulting Chapman-Enskog expansions. In this chapter, we present some important

properties (such as macroscopic multi-step finite difference form and consistency) of the LBE

derived from vector-kinetic equations. We also present a novel way to handle well-balancing of

convection and source terms in this framework. Further, we also present an LBM model that

allows upwinding along diagonal directions in addition to the usual upwinding along coordinate

directions (presented first in the proceedings of a conference [4]).

The chapter is organised as follows: Section 5.2 presents the mathematical model of hyper-

bolic conservation law and its vector-kinetic equation. Section 5.3 presents two different ways

of deriving LBE from vector-kinetic equation, their Chapman-Enskog expansion and different

equilibrium functions. Different properties such as H-inequality, macroscopic multi-step finite

difference form, consistency, total variation boundedness and positivity are discussed in section
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5.4. The well-balancing technique for hyperbolic partial differential equations with source terms

is explained in section 5.5. The D2Q9 model of LBM that allows upwinding along diagonal

directions is explained in section 5.6. The numerical validation of the methods is presented in

section 5.7. Section 5.8 concludes the chapter.

5.2 Mathematical model

In this section, we describe the hyperbolic conservation law and the vector-kinetic equation

that approximates it.

5.2.1 Hyperbolic conservation law

Consider the hyperbolic conservation law

∂tU + ∂xd
Gd(U) = 0, (5.1)

where U(x1, x2, . . . , xD, t) : Ω × [0, T ] → Rp is the conserved variable and Gd(U) : Rp → Rp

is the flux in direction d, for d ∈ {1, 2, . . . , D}. Here Ω ⊂ RD, D and p indicate the number

of dimensions and number of equations in the system respectively. η(U) is the convex entropy

function for (5.1).

5.2.2 Vector-kinetic equation

The hyperbolic conservation law in (5.1) can be approximated by the vector-kinetic equation

(VKE) (see [43, 7]),

∂tfq + ∂xd

(
vdqfq

)
= −1

ϵ

(
fq − f eq

q (U)
)
. (5.2)

Here fq : Ω × [0, T ] → Rp, f eq
q : Rp → Rp and q ∈ {1, 2, . . . , Q} with Q being the number of

discrete velocities. ϵ is a positive small parameter. vdq is the dth component of the qth discrete

velocity. Summing (5.2) over all q, we get

∂t

Q∑
q=1

fq + ∂xd

Q∑
q=1

(
vdqfq

)
= −1

ϵ

Q∑
q=1

(
fq − f eq

q (U)
)
. (5.3)

If
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U , then

∂tU + ∂xd

Q∑
q=1

(
vdqfq

)
= 0. (5.4)
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In the limit ϵ→ 0, we infer from (5.2) that fq → f eq
q (U). Thus, we can write fq as perturbation

(in ϵ) of f eq
q :

fq = f eq
q + ϵfneq

q , (5.5)

where fneq
q consists of the non-equilibrium perturbations.

If
∑Q

q=1 v
d
qf

eq
q = Gd(U), then (5.4) becomes the hyperbolic conservation law (5.1) in the limit

ϵ→ 0.

5.3 Lattice Boltzmann equation

In this section, we present explicit and semi-implicit lattice Boltzmann discretisations of the

VKE (5.2), their comparison, and their Chapman-Enskog expansions.

Let us use the vector notations: x =
[
x1, x2, . . . , xD

]
and vq =

[
v1q , v2q , . . . , vDq

]
. An

explicit Euler discretisation of the VKE (5.2) along dxd

dt
= vdq (the characteristic equation) gives

fq (x, t+∆t) = fq (x− vq∆t, t)−
∆t

ϵ

(
fq (x− vq∆t, t)− f eq

q (U (x− vq∆t, t))
)
. (5.6)

Using ω = ∆t
ϵ

and rewriting the above equation, we obtain the lattice Boltzmann equation

(LBE)

fq (x, t+∆t) = (1− ω)fq (x− vq∆t, t) + ωf eq
q (U (x− vq∆t, t)) . (5.7)

On the other hand, a semi-implicit discretisation of the VKE (5.2) with implicit treatment of

fq in the collision term gives

fq (x, t+∆t) = fq (x− vq∆t, t)−
∆t

ϵ

(
fq (x, t+∆t)− f eq

q (U (x− vq∆t, t))
)
. (5.8)

Rewriting the above equation as

fq (x, t+∆t) =

(
1

1 + ω

)
fq (x− vq∆t, t) +

(
ω

1 + ω

)
f eq
q (U (x− vq∆t, t)) , (5.9)

or fq (x, t+∆t) = (1− ω̃) fq (x− vq∆t, t) + ω̃f eq
q (U (x− vq∆t, t)) , (5.10)

an LBE with ω̃ = ω
1+ω

is obtained.

If the grid is uniform with spacing ∆xd along direction d and if the velocities are chosen such

that vdq = m∆xd

∆t
with m ∈ Z, ∀d, q, then the collision-streaming algorithm

Collision: f ∗
q (x− vq∆t, t) = (1− ω̂)fq (x− vq∆t, t) + ω̂f eq

q (U (x− vq∆t, t)) (5.11)

Streaming: fq (x, t+∆t) = f ∗
q (x− vq∆t, t) (5.12)
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can be used to numerically implement the LBEs in (5.7) (with ω̂ = ω) and (5.10) (with ω̂ = ω̃).

It is to be noted that the streaming in (5.12) is exact. After evaluating fq (x, t+∆t), we find

U by using U (x, t+∆t) =
∑Q

q=1 fq (x, t+∆t). Then, we evaluate f eq
q (U (x, t+∆t)) and then

proceed with the next time step. Hereafter, we use ω̂ in the presentation of our theory to

commonly represent ω in (5.7) and ω̃ in (5.10).

5.3.1 Chapman-Enskog expansion

Taylor expanding the LBEs in (5.7) (with ω̂ = ω) and (5.10) (with ω̂ = ω̃) and simplifying, we

get

(∂t + vq · ∇) fq = − ω̂

∆t

(
fq − f eq

q

)
+
ω̂

2
(∂t + vq · ∇)

(
fq − f eq

q

)
+ O(∆t2). (5.13)

Consider the perturbation expansion of fq:

fq = f eq
q + ϵf (1)

q + ϵ2f (2)
q + . . . (5.14)

Using the above expression, since
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U , we infer that the moment of non-

equilibrium function leads to
∑Q

q=1

(
ϵf

(1)
q + ϵ2f

(2)
q + . . .

)
= 0. Each term corresponding to dif-

ferent order of ϵ in this moment expression must individually be zero. Hence
∑Q

q=1 f
(i)
q = 0,∀i ∈

N. Multiple scale expansion of derivatives of fq gives ∂tfq =
(
ϵ∂

(1)
t + ϵ2∂

(2)
t + ...

)
fq and vq ·

∇fq = ϵvq · ∇(1)fq.

Using perturbation expansion of fq and multiple scale expansion of derivatives of fq in (5.13)

and separating out O(ϵ) and O(ϵ2) terms,

O(ϵ) :
(
∂
(1)
t + vq · ∇(1)

)
f eq
q = − ω̂

∆t
f (1)
q (5.15)

O(ϵ2) : ∂
(2)
t f eq

q +

(
1− ω̂

2

)(
∂
(1)
t + vq · ∇(1)

)
f (1)
q = − ω̂

∆t
f (2)
q (5.16)

Zeroth moment
(∑Q

q=1

)
of O(ϵ) terms in (5.15) and O(ϵ2) terms in (5.16) respectively give

∂
(1)
t U + ∂(1)xd

Gd(U) = 0, (5.17)

∂
(2)
t U +

(
1− ω̂

2

)
∂(1)xd

(
Q∑

q=1

v(d)q f (1)
q

)
= 0. (5.18)
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From the first moment
(∑Q

q=1 v
d
q

)
of O(ϵ) terms in (5.15), we get

Q∑
q=1

vdqf
(1)
q = −∆t

ω̂

(
∂UG

d
(
−∂UGi∂(1)xi

U
)
+ ∂(1)xi

(
Q∑

q=1

vdqv
i
qf

eq
q

))
(5.19)

Recombining the zeroth moment equations of O(ϵ) in (5.17) and O(ϵ2) in (5.18), we obtain

(
ϵ∂

(1)
t + ϵ2∂

(2)
t

)
U + ϵ∂(1)xd

Gd(U)

+

(
1− ω̂

2

)
ϵ∂(1)xd

(
−∆t

ω̂

(
∂UG

d
(
−∂UGiϵ∂(1)xi

U
)
+ ϵ∂(1)xi

(
Q∑

q=1

vdqv
i
qf

eq
q

)))
= 0 + O(ϵ3) (5.20)

Replacing the multiple scale expansions of derivatives present in the above equation with their

non-expanded form, we get

∂tU + ∂xd
Gd(U) = ∆t

(
1

ω̂
− 1

2

)
∂xd

(
∂xi

(
Q∑

q=1

vdqv
i
qf

eq
q

)
− ∂UG

d∂UG
i∂xi

U

)
(5.21)

upto O (∆t2).

The above equation is well known in LBM community for modelling of advection-diffusion

equation, where the term on the right hand side is commonly decomposed into physical diffusion

and numerical diffusion. As we are dealing with hyperbolic equations in this work, the term on

the right hand side of (5.21) solely represents numerical diffusion.

5.3.2 Equilibrium function

In the previous sections, we imposed the following conditions on f eq
q :

Q∑
q=1

f eq
q = U,

Q∑
q=1

vdqf
eq
q = Gd(U). (5.22)

In this section, we present some f eq
q that satisfy the above requirements.

5.3.2.1 Classical D1Q2

Consider one dimension (D=1) and 2 discrete velocities (Q = 2) such that v11 = λ and v12 = −λ,
and λ = ∆x1

∆t
. Then,

f eq
q =

1

2
U − (−1)q

1

2λ
G1(U) for q ∈ {1, 2} (5.23)
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satisfies (5.22). The Chapman-Enskog expansion (5.21) in this case becomes,

∂tU + ∂x1G
1(U) = ∆t

(
1

ω̂
− 1

2

)
∂x1

((
λ2I − |∂UG1|2

)
∂x1U

)
. (5.24)

It is to be noted that the O(∆t) term on the right hand side of the above equation represents

numerical diffusion. For stability, we require the numerical diffusion coefficient to be positive.

Therefore, we require λ2I > |∂UG1|2 and 0 < ω̂ < 2.

5.3.2.2 D1Q3

Consider one dimension (D=1) and 3 discrete velocities (Q = 3) such that v11 = λ, v12 = 0 and

v13 = −λ, and λ = ∆x1

∆t
. Then,

f eq
q =

1

3
U + (δq1 − δq3)

1

2λ
G1(U) for q ∈ {1, 2, 3} (5.25)

where δ is the Kronecker delta function, satisfies (5.22). The Chapman-Enskog expansion (5.21)

in this case becomes,

∂tU + ∂x1G
1(U) = ∆t

(
1

ω̂
− 1

2

)
∂x1

((
2

3
λ2I − |∂UG1|2

)
∂x1U

)
. (5.26)

Enforcement of the positivity of numerical diffusion coefficient yields λ2I > 3
2
|∂UG1|2 and

0 < ω̂ < 2.

5.3.2.3 Upwind DdQ(2d+ 1)

Consider D = d and Q = 2d+ 1 with λd =
∆xd

∆t
and

vdq = λdδqd − λdδq(d+(d+1)). (5.27)

Define

f eq
q =


Gq+

λq
, for q ∈ {1, 2, . . . , d}

U −
∑d

d=1

(
Gd++Gd−

λd

)
, for q = d+ 1

G(q−(d+1))−

λq−(d+1)
, for q ∈ {d+ 2, d+ 3, . . . , 2d+ 1}

(5.28)

with Gd = Gd+ − Gd−. This satisfies (5.22) and leads to the Flux Decomposition technique

of [7]. Using an additional choice, Gd+ and Gd− for a hyperbolic system can be evaluated

by a suitable flux splitting method available in literature. For instance, one can use Gd+ and
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Gd− from commonly known flux vector splitting methods such as kinetic flux vector splitting

[211], Steger-Warming flux vector splitting [286] and van Leer’s flux vector splitting [313].

One can also evaluate Gd+ and Gd− from some flux difference splitting methods such as Roe’s

approximate Riemann solver [266] and kinetic flux difference splitting [280]. If we consider

scalar conservation laws (i.e., p = 1), then we can simply use the sign of wave speed ∂UG
d to

determine the split fluxes as:

∂UG
d+ =

{
∂UG

d if ∂UG
d > 0

0 if ∂UG
d ≤ 0

, ∂UG
d− =

{
0 if ∂UG

d > 0

−∂UGd if ∂UG
d ≤ 0

, (5.29)

Gd± =

∫ U

0

∂UG
d±dU if Gd(U = 0) = 0. (5.30)

The Chapman-Enskog expansion (5.21) for the case of upwind DdQ(2d+ 1) becomes,

∂tU + ∂xd
Gd(U) = ∆t

(
1

ω̂
− 1

2

)
∂xd

(
δdiλd∂U

(
Gd+ +Gd−)− ∂UG

d∂UG
i
)
∂xi
U. (5.31)

For positivity of numerical diffusion coefficient, we require

δdiλd∂U
(
Gd+ +Gd−)− ∂UG

d∂UG
i > 0 (5.32)

along with 0 < ω̂ < 2.

For all the models of equilibrium function described above, a condition relating λd and ∂UG
d is

obtained while ensuring positivity of numerical diffusion coefficient. Such relations are known as

sub-characteristic conditions as they relate the characteristic speeds of vector-kinetic equation

to those of the hyperbolic conservation law.

Remark 5.1 In all the models of equilibrium function described above, 0 < ω̂ < 2 is required

for enforcing the positivity of numerical diffusion coefficient. We know that ω̂ = ω and ω̂ = ω̃

for LBEs in (5.7) and (5.10) respectively. Thus, the stability requirement is,

For LBE in (5.7) : 0 < ω̂ = ω =
∆t

ϵ
< 2 =⇒ 0 < ∆t < 2ϵ, (5.33)

For LBE in (5.10) : 0 < ω̂ = ω̃ =
ω

1 + ω
=

∆t

ϵ+∆t
< 2 =⇒ ∆t > 0. (5.34)

It is to be noted that the requirement of 0 < ω̃ < 2 does not impose any upper-bound on ∆t for

the LBE in (5.10).
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Figure 5.1: Plot of ω̃ vs. ω

Remark 5.2 For the LBE in (5.10), the positivity of numerical diffusion coefficient enforces

0 < ω̃ < 2. However, since ω̃ = ω
1+ω

and ω = ∆t
ϵ
> 0, ω̃ is restricted to the interval (0, 1).

Figure 5.1 shows the plot of ω̃ vs. ω, and it can be seen that 0 < ω̃ < 1 for ω > 0.

5.4 Properties of the lattice Boltzmann equation

In this section, we discuss the properties of LBEs in (5.7) (with ω̂ = ω) and (5.10) (with ω̂ = ω̃).

The properties considered are: H-inequality, macroscopic finite difference form, consistency,

total variation boundedness and positivity.

5.4.1 H-inequality

We prove that an H-inequality is associated with the LBE obtained from semi-implicit dis-

cretisation of the VKE (i.e., (5.10)). We also show that a constraint on ω is required to

associate an H-inequality with the LBE obtained from explicit discretisation of the VKE (i.e.,

(5.7)). For convenience, we consider scalar conservation laws (i.e., p = 1) in the presentation

of H-inequality.

Definition 5.1 Define a function Hq(fq) such that:

• Hq(fq) is convex with respect to fq (i.e., ∂Hq

∂fq
is monotonically increasing and ∂2Hq

∂f2
q

is

positive-definite),

•
∑Q

q=1Hq(f
eq
q ) = η(U),
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•
∑Q

q=1Hq(f
eq
q ) ≤

∑Q
q=1Hq(fq).

We consider the semi-implicit discretisation (5.8) of VKE with the notation fn+1
qxi

:= fq (x, t+∆t),

fn
qyi

:= fq (x− vq∆t, t) and f
eqn

qyi
:= f eq

q (x− vq∆t, t):

fn+1
qxi

= fn
qyi

− ω
(
fn+1
qxi

− f eqn

qyi

)
. (5.35)

Theorem 5.1 There exists an inequality

Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
≤ −ω

(
Hq

(
fn+1
qxi

)
−Hq

(
f eqn

qyi

))
(5.36)

corresponding to the semi-implicit discretisation (5.35) of VKE with ω = ∆t
ϵ
> 0. Here, Hq(fq)

follows the definition 5.1.

Proof: Left multiplying ∂Hq

∂fq

∣∣∣
fn+1
qxi

to (5.35), we get

∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− fn
qyi

)
= −ω ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− f eqn

qyi

)
. (5.37)

We consider the left and right hand sides of the above equation separately.

By mean value theorem, we have

∂Hq

∂fq

∣∣∣∣
fa

(
fn+1
qxi

− fn
qyi

)
= Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
(5.38)

for some fa lying on the line segment connecting fn+1
qxi

and fn
qyi
. Further, we have the following

due to the monotonicity of ∂Hq

∂fq
:

fn+1
qxi

≥ fa ≥ fn
qyi

=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≥ ∂Hq

∂fq

∣∣∣∣
fa

≥ ∂Hq

∂fq

∣∣∣∣
fn
qyi

, (5.39)

fn+1
qxi

≤ fa ≤ fn
qyi

=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≤ ∂Hq

∂fq

∣∣∣∣
fa

≤ ∂Hq

∂fq

∣∣∣∣
fn
qyi

. (5.40)

Thus, we obtain the following inequality involving the term on the left hand side of (5.37):

Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
=
∂Hq

∂fq

∣∣∣∣
fa

(
fn+1
qxi

− fn
qyi

)
≤ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− fn
qyi

)
. (5.41)
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On the other hand, we also have the following by mean value theorem:

∂Hq

∂fq

∣∣∣∣
fb

(
fn+1
qxi

− f eqn

qyi

)
= Hq

(
fn+1
qxi

)
−Hq

(
f eqn

qyi

)
(5.42)

for some fb lying on the line segment connecting fn+1
qxi

and f eqn

qyi
. Further, due to the monotonicity

of ∂Hq

∂fq
, we have

fn+1
qxi

≥ fb ≥ f eqn

qyi
=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≥ ∂Hq

∂fq

∣∣∣∣
fb

≥ ∂Hq

∂fq

∣∣∣∣
feqn
qyi

, (5.43)

fn+1
qxi

≤ fb ≤ f eqn

qyi
=⇒ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

≤ ∂Hq

∂fq

∣∣∣∣
fb

≤ ∂Hq

∂fq

∣∣∣∣
feqn
qyi

. (5.44)

Thus, we obtain the following inequality involving the term on the right hand side of (5.37):

Hq

(
fn+1
qxi

)
−Hq

(
f eqn

qyi

)
=
∂Hq

∂fq

∣∣∣∣
fb

(
fn+1
qxi

− f eqn

qyi

)
≤ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− f eqn

qyi

)
. (5.45)

Therefore, from (5.41) and (5.45), we obtain

Hq

(
fn+1
qxi

)
−Hq

(
fn
qyi

)
≤ ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− fn
qyi

)
(5.46)

= −ω ∂Hq

∂fq

∣∣∣∣
fn+1
qxi

(
fn+1
qxi

− f eqn

qyi

)
(5.47)

≤ −ω
(
Hq

(
fn+1
qxi

)
−Hq

(
f eqn

qyi

))
, since ω =

∆t

ϵ
> 0. (5.48)

2

Remark 5.3 The following can be inferred from the above theorem:

Hq

(
fn+1
qxi

)
≤ 1

1 + ω
Hq

(
fn
qyi

)
+

ω

1 + ω
Hq

(
f eqn

qyi

)
, (5.49)

Hq

(
fn+1
qxi

)
≤ (1− ω̃)Hq

(
fn
qyi

)
+ ω̃Hq

(
f eqn

qyi

)
. (5.50)

Since
∑Q

q=1Hq

(
f eqn

qyi

)
≤
∑Q

q=1Hq

(
fn
qyi

)
according to the definition of Hq, we obtain

Q∑
q=1

Hq

(
fn+1
qxi

)
≤

Q∑
q=1

Hq

(
fn
qyi

)
. (5.51)
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Thus, for the LBE obtained from semi-implicit discretisation of the VKE, the H-inequality

holds without enforcing any constraint on ω = ∆t
ϵ
.

The following remark 5.4 presents H-inequality for general LBE, and the associated conditions.

This has been presented particularly for explicit case in [69].

Remark 5.4 Consider the general LBE,

fn+1
qxi

= (1− ω̂) fn
qyi

+ ω̂f eqn

qyi
(5.52)

with ω̂ = ω (for explicit discretisation of VKE) and ω̂ = ω̃ (for semi-implicit discretisation of

VKE). Applying Hq on this LBE, we obtain

Hq

(
fn+1
qxi

)
= Hq

(
(1− ω̂) fn

qyi
+ ω̂f eqn

qyi

)
(5.53)

≤ (1− ω̂)Hq

(
fn
qyi

)
+ ω̂Hq

(
f eqn

qyi

)
, for 0 < ω̂ ≤ 1 (5.54)

Since
∑Q

q=1Hq

(
f eqn

qyi

)
≤
∑Q

q=1Hq

(
fn
qyi

)
, we obtain

Q∑
q=1

Hq

(
fn+1
qxi

)
≤

Q∑
q=1

Hq

(
fn
qyi

)
. (5.55)

Thus, the H-inequality holds for the general LBE if the constraint 0 < ω̂ ≤ 1 is satisfied. It

is to be noted that the H-inequality yields a stronger constraint on ω̂ than the positivity of

numerical diffusion coefficient.

From the above remarks, the following can be inferred:

• For LBE obtained by explicit discretisation of VKE, ω̂ = ω. Hence, H-inequality holds

corresponding to this LBE if 0 < ω = ∆t
ϵ

≤ 1. It is to be noted that this constraint on

ω is more restrictive than the constraint 0 < ω < 2 that enforces positivity of numerical

diffusion coefficient.

• For LBE obtained by semi-implicit discretisation of VKE, ω̂ = ω̃ = ω
1+ω

. According to

remark 5.4, H-inequality holds corresponding to this LBE if 0 < ω̃ = ω
1+ω

≤ 1, and this

is satisfied for all ω = ∆t
ϵ
> 0. This also agrees with remark 5.3 which states that H-

inequality holds corresponding to this LBE for all ω = ∆t
ϵ
> 0. Thus, the semi-implicit

case of LBE is entropy-satisfying by construction without imposing any constraint.
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5.4.2 Macroscopic finite difference form

In this section, we show the macroscopic finite difference form of LBEs in (5.7) (with ω̂ = ω)

and (5.10) (with ω̂ = ω̃).

We briefly provide some technicalities for clarity. LBE is evolved on a fixed uniform grid

with spacing ∆xd along direction d. At every time step, λd,n is evaluated such that the sub-

characteristic condition obtained by enforcing the positivity of numerical diffusion coefficient

is satisfied. Thus, the discrete velocities can change with time step, and they are given by:

vdq,n = mq|d λd,n, where mq|d ∈ Z is constant for direction d and qth discrete velocity. The

current time step is found by using tn+1 − tn := ∆tn = ∆xd

λd,n
. Note that in addition to satisfying

the sub-characteristic condition, λd,n > ∆xd is essential for upper-bounding ∆tn as ∆tn < 1.

Further, ω is kept constant for all time steps, and hence ϵ is allowed to depend on n as ∆tn

depends on n.

For convenience, we consider one dimension (D = 1) in the presentation of macroscopic finite

difference form. Hence, the subscript and superscript d indicating dth dimension can be ignored

in all the variables. We consider the general LBE,

fq (xi, tn +∆tn) = (1− ω̂)fq (xi − vq,n∆tn, tn) + ω̂f eq
q (U (xi − vq,n∆tn, tn)) (5.56)

with ω̂ = ω and ω̂ = ω̃ respectively for explicit and semi-implicit cases. For brevity, we

introduce the following notations:

fn+1
qi

:= fq (xi, tn +∆tn), f
n
qi−mq

:= fq (xi − vq,n∆tn, tn) and f
eqn

qi−mq
:= f eq

q (U (xi − vq,n∆tn, tn)).

We also utilise the splitting of fn
qi

as equilibrium and non-equilibrium parts: fn
qi

= f eqn

qi
+

fneqn

qi
,∀i, n. Note here that we have absorbed ϵ of ϵfneqn

qi
(refer (5.5)) into fneqn

qi
(i.e., fneqn

qi
=

O(ϵ)) for convenience in presentation. Further, we also assume that f 0
qi

= f eq0

qi
at the initial

time. Thus, fneq0

qi
= 0.

Theorem 5.2 The general LBE

fn+1
qi

= (1− ω̂)fn
qi−mq

+ ω̂f eqn

qi−mq
(5.57)

is equivalent to

fn+1
qi

= ω̂

(
N−1∑
k=0

(1− ω̂)kf eqn−k

qi−(k+1)mq

)
+ (1− ω̂)Nf eqn−N

qi−(N+1)mq
(5.58)

if fneqn−N

qi−(N+1)mq
= 0. Here N ∈ N.
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Proof: Using fn
qi−mq

= f eqn

qi−mq
+ fneqn

qi−mq
in the general LBE (5.57), we obtain

fn+1
qi

= f eqn

qi−mq
+ (1− ω̂)fneqn

qi−mq
. (5.59)

Using fn+1
qi

= f eqn+1

qi
+ fneqn+1

qi
in the above equation yields

fneqn+1

qi
= −f eqn+1

qi
+ f eqn

qi−mq
+ (1− ω̂)fneqn

qi−mq
. (5.60)

Inserting fneqn+1

qi
from the above equation into fneqn

qi−mq
in (5.59) by employing the transformation

n := n′ + 1, i−mq := i′, we get

fn+1
qi

= f eqn

qi−mq
+ (1− ω̂)

(
−f eqn

qi−mq
+ f eqn−1

qi−2mq
+ (1− ω̂)fneqn−1

qi−2mq

)
, (5.61)

= ω̂f eqn

qi−mq
+ (1− ω̂)

(
f eqn−1

qi−2mq
+ (1− ω̂)fneqn−1

qi−2mq

)
. (5.62)

Recursively inserting fneqn+1

qi
from (5.60) into the non-equilibrium term of above equation with

the transformation n− j := n′ + 1 and i− (j + 1)mq := i′ where j ∈ {1, 2, . . . , N − 1}, we get

fn+1
qi

= ω̂
(
(1− ω̂)0f eqn

qi−mq
+ (1− ω̂)1f eqn−1

qi−2mq
+ · · ·+ (1− ω̂)N−1f eqn−(N−1)

qi−Nmq

)
+ (1− ω̂)N

(
f eqn−N

qi−(N+1)mq
+ (1− ω̂)fneqn−N

qi−(N+1)mq

)
. (5.63)

If fneqn−N

qi−(N+1)mq
= 0, then we obtain (5.58). 2

The above theorem depicts the multi-step nature of LBE by considering tn−N as the initial

time. That is, fn+1
qi

depends on the values of the equilibrium function in neighboring grid

points at all previous time steps starting from the initial time tn−N . Note that fneqn−N

qi−(N+1)mq
= 0

as fn−N
qi−(N+1)mq

= f eqn−N

qi−(N+1)mq
is considered at the initial time.

Summing (5.58) over q with some form of equilibrium function discussed in section 5.3.2, we

obtain the macroscopic finite difference form. In this work, we consider the upwind DdQ(2d+1)

model (i.e., D1Q3 for one dimension). The equilibrium function for upwind D1Q3 model is,

f eqn

1i
=
G+n

i

λn
(5.64)

f eqn

2i
= Un

i − G+n

i +G−n

i

λn
(5.65)

f eqn

3i
=
G−n

i

λn
(5.66)
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and the corresponding velocities are v1,n = λn, v2,n = 0 and v3,n = −λn. Thus, m1 = 1, m2 = 0

and m3 = −1.

Remark 5.5 For k ∈ {0, 1, . . . , N}, we have

3∑
q=1

f eqn−k

qi−(k+1)mq
= f eqn−k

1i−(k+1)
+ f eqn−k

2i
+ f eqn−k

3i+(k+1)
(5.67)

=
G+n−k

i−(k+1)

λn−k

+ Un−k
i − G+n−k

i +G−n−k

i

λn−k

+
G−n−k

i+(k+1)

λn−k

(5.68)

= Un−k
i − 1

λn−k

((
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

))
(5.69)

= Un−k
i − ∆tn−k

∆x

((
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

))
. (5.70)

Defining the notation

Un−k+1
i,(k+1) := Un−k

i − ∆tn−k

∆x

((
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

))
, (5.71)

∑3
q=1 (5.58) becomes

Un+1
i = ω̂

(
N−1∑
k=0

(1− ω̂)kUn−k+1
i,(k+1)

)
+ (1− ω̂)NUn−N+1

i,(N+1). (5.72)

(5.72) is the macroscopic finite difference form of the LBEs in (5.7) (with ω̂ = ω) and (5.10)

(with ω̂ = ω̃).

Remark 5.6 If ω̂ = 1, then (1− ω̂)0 = 1 and (1− ω̂)k = 0 for k ∈ {1, 2, . . . , N}. In this case,

the macroscopic finite difference form (5.72) becomes,

Un+1
i = Un+1

i,1 = Un
i − ∆tn

∆x

((
G+n

i −G+n

i−1

)
−
(
G−n

i+1 −G−n

i

))
(5.73)

which is an explicit (or forward) Euler upwind scheme for the hyperbolic system ∂tU+∂xG(U) =

0.

Note: For k ∈ {0, 1, . . . , N}, Un−k+1
i,(k+1) in (5.71) is an explicit (or forward) Euler upwind discreti-

sation of the hyperbolic system ∂tU + ∂xG(U) = 0, at time tn−k+1 with grid spacing (k+1)∆x.

Thus, (5.72) which is the macroscopic finite difference form of LBE is simply a linear combina-

tion of upwind discretisations at varied time levels and grid spacings.
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Remark 5.7 For 0 < ω̂ < 1, (1 − ω̂)k > 0 holds true for k ∈ {0, 1, . . . , N}. Hence, in this

case, numerical diffusion of the macroscopic finite difference form (5.72) has positively weighted

contributions from each Un−k+1
i,(k+1). Thus, when 0 < ω̂ < 1, it is expected that the numerical

diffusion increases with decrease in ω̂ while all the parameters remain frozen.

On the other hand, when 1 < ω̂ < 2, the sign of (1−ω̂)k alternates with k. Therefore, numerical

diffusion of the macroscopic finite difference form (5.72) experiences alternately signed (with

respect to k) weighted contributions from Un−k+1
i,(k+1).

As a consequence, the minimum (over ω̂) numerical diffusion in LBE obtained by semi-implicit

discretisation of VKE is larger than that in the explicit case.

5.4.3 Consistency

In this section, we discuss the consistency of the macroscopic finite difference form (5.72) with

the hyperbolic system ∂tU + ∂xG(U) = 0.

Theorem 5.3 Under suitable smoothness assumptions on all involved variables, the expression

(5.71) becomes

Un−k+1
i,(k+1) =

{
Un
i −

∑k
j=1 ∆tn−j ∂tU |ni − (k + 1)∆tn−k∂x G|ni for k ∈ {1, 2, . . . , N}
Un
i − (k + 1)∆tn−k∂x G|ni for k = 0

(5.74)

upto O (k(k + 1)∆x2), if ∆tm = O(∆x) ∀m.

Proof: Taylor expanding each term in Un−k+1
i,(k+1):

Un−k
i =

{
Un
i −

∑k
j=1∆tn−j ∂tU |ni + O

(
(k∆x)2

)
for k ∈ {1, 2, . . . , N}

Un
i for k = 0

(5.75)

since
k∑

j=1

∆tn−j = O(k∆x) ( as ∆tm = O(∆x),∀m)

(
G+n−k

i −G+n−k

i−(k+1)

)
= (k + 1)∆x∂x G

+
∣∣n−k

i
+ O

(
((k + 1)∆x)2

)(
G−n−k

i+(k+1) −G−n−k

i

)
= (k + 1)∆x∂x G

−∣∣n−k

i
+ O

(
((k + 1)∆x)2

)
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(
G+n−k

i −G+n−k

i−(k+1)

)
−
(
G−n−k

i+(k+1) −G−n−k

i

)
= (k + 1)∆x∂x

(
G+ −G−)∣∣n−k

i

= (k + 1)∆x∂x G|n−k
i (5.76)

upto O
(
((k + 1)∆x)2

)
∂x G|n−k

i =

{
∂x G|ni −

∑k
j=1∆tn−j∂tx G|ni + O

(
(k∆x)2

)
for k ∈ {1, 2, . . . , N}

∂x G|ni for k = 0
(5.77)

For k ∈ {1, 2, . . . , N},

(k + 1)∆x∂x G|n−k
i ≃ (k + 1)∆x∂x G|ni −

k∑
j=1

∆tn−j(k + 1)∆x∂tx G|ni

= (k + 1)∆x∂x G|ni + O
(
k(k + 1)∆x2

)
, (5.78)

since ∆tm = O(∆x),∀m.

Thus, inserting the above expressions into (5.71), we get (5.74). 2

Remark 5.8 Taylor expanding Un+1
i about Un

i , we get

Un+1
i = Un

i +∆tn ∂tU |ni + O
(
∆t2n

)
. (5.79)

Inserting (5.74) and the above expression into (5.72), we obtain

Un
i +∆tn ∂tU |ni = ω̂

(
(1− ω̂)0 (Un

i −∆tn∂x G|ni )

+
N−1∑
k=1

(1− ω̂)k

(
Un
i −

k∑
j=1

∆tn−j ∂tU |ni − (k + 1)∆tn−k∂x G|ni

))

+ (1− ω̂)N

(
Un
i −

N∑
j=1

∆tn−j ∂tU |ni − (N + 1)∆tn−N∂x G|ni

)
(5.80)

upto O (N(N + 1)∆x2). Upon simplifying the above expression, we obtain the following upto

O (N(N + 1)∆x2):

(
1− ω̂

N−1∑
k=0

(1− ω̂)k − (1− ω̂)N

)
Un
i

+

(
∆tn + ω̂

N−1∑
k=1

(1− ω̂)k
k∑

j=1

∆tn−j + (1− ω̂)N
N∑
j=1

∆tn−j

)
∂tU |ni
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+

(
ω̂

N−1∑
k=0

(1− ω̂)k(k + 1)∆tn−k + (1− ω̂)N(N + 1)∆tn−N

)
∂x G|ni = 0. (5.81)

Remark 5.9 The coefficients of Un
i and ∂tU |ni in (5.81) can be simplified as shown below:

1− ω̂
N−1∑
k=0

(1− ω̂)k − (1− ω̂)N = 1− ω̂

(
1− (1− ω̂)N

1− (1− ω̂)

)
− (1− ω̂)N , for ω̂ ̸= 0

= 0 (5.82)

Since 1 = ω̂
∑N−1

k=0 (1 − ω̂)k + (1 − ω̂)N , we have ∆tn =
(
ω̂
∑N−1

k=0 (1− ω̂)k + (1− ω̂)N
)
∆tn.

Therefore,

∆tn+ω̂
N−1∑
k=1

(1−ω̂)k
k∑

j=1

∆tn−j+(1−ω̂)N
N∑
j=1

∆tn−j = ω̂
N−1∑
k=0

(1−ω̂)k
k∑

j=0

∆tn−j+(1−ω̂)N
N∑
j=0

∆tn−j.

(5.83)

Inserting (5.82) and (5.83) into (5.81), we obtain

(
ω̂

N−1∑
k=0

(1− ω̂)k
k∑

j=0

∆tn−j + (1− ω̂)N
N∑
j=0

∆tn−j

)
∂tU |ni

+

(
ω̂

N−1∑
k=0

(1− ω̂)k(k + 1)∆tn−k + (1− ω̂)N(N + 1)∆tn−N

)
∂x G|ni = 0. (5.84)

upto O (N(N + 1)∆x2).

Remark 5.10 If ∆tm = ∆t,∀m, then (5.84) becomes(
ω̂

N−1∑
k=0

(1− ω̂)k(k + 1)∆t+ (1− ω̂)N(N + 1)∆t

)
(∂tU |ni + ∂x G|ni ) = O

(
N(N + 1)∆x2

)
,

=⇒ ∂tU |ni + ∂x G|ni = O (N∆x) . (5.85)

Thus, in this case, the macroscopic finite difference form of LBE is consistent with the hyperbolic

system.

Remark 5.11 If ω̂ = 1, then (1− ω̂)0 = 1 and (1− ω̂)k = 0 for k ∈ {1, 2, . . . , N}. Thus (5.84)
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becomes

∆tn (∂tU |ni + ∂x G|ni ) = O
(
N(N + 1)∆x2

)
,

=⇒ ∂tU |ni + ∂x G|ni = O (N(N + 1)∆x) . (5.86)

Therefore, the macroscopic finite difference form of LBE is consistent with the hyperbolic system

for this case too.

Although the lattice Boltzmann algorithm is consistent for the two special cases: (i) constant

time step size and (ii) ω̂ = 1, it can be seen from (5.84) that consistency cannot be attained

in the general case as
∑k

j=0 ∆tn−j ̸= (k + 1)∆tn−k for k ∈ {1, 2, . . . , N}. However, one can

choose constant ∆t such that the sub-characteristic condition holds for all time steps. In this

way, the algorithm will be consistent with the hyperbolic system for the choice of the time-step

satisfying the sub-characteristic condition.

5.4.4 Total Variation Boundedness

The total variation boundedness (TVB) property of a numerical method for hyperbolic system

ensures that the spatial variation remains bounded for all time steps. In this section, we discuss

the TVB property of our lattice Boltzmann method by using its macroscopic finite difference

form (5.72). This expression contains Un−k+1
i,(k+1) for k ∈ {0, 1, . . . , N}. For discussion of TVB

property, we consider Un−k+1
i,(k+1) derived by utilising upwind D1Q3 equilibrium function as in

section 5.4.2.

Definition 5.2 The total variation of any variable θ defined on a lattice structure indexed by

i is given by,

TV(θ) =
∑
i

|θi+1 − θi|

Theorem 5.4 Let Un+1
i given by (5.72) be the macroscopic finite difference form. Then, its

total variation satisfies

TV
(
Un+1

)
≤

(
|ω̂|

N−1∑
k=0

|1− ω̂|k + |1− ω̂|N
)
C (5.87)

if TV
(
Un−k+1

(k+1)

)
≤ C, for k ∈ {0, 1, . . . , N}.
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Proof: Consider Un+1
i given by (5.72). Then, Un+1

i+1 − Un+1
i becomes

Un+1
i+1 − Un+1

i = ω̂

(
N−1∑
k=0

(1− ω̂)k
(
Un−k+1

i+1,(k+1) − Un−k+1
i,(k+1)

))
+ (1− ω̂)N

(
Un−N+1

i+1,(N+1) − Un−N+1
i,(N+1)

)
.

Then,

∣∣Un+1
i+1 − Un+1

i

∣∣ ≤ |ω̂|
N−1∑
k=0

|1− ω̂|k
∣∣∣Un−k+1

i+1,(k+1) − Un−k+1
i,(k+1)

∣∣∣+ |1− ω̂|N
∣∣∣Un−N+1

i+1,(N+1) − Un−N+1
i,(N+1)

∣∣∣ ,
=⇒ TV

(
Un+1

)
≤ |ω̂|

N−1∑
k=0

|1− ω̂|k TV
(
Un−k+1

(k+1)

)
+ |1− ω̂|N TV

(
Un−N+1

(N+1)

)
.

Using TV
(
Un−k+1

(k+1)

)
≤ C for k ∈ {0, 1, . . . , N} in the above expression, we get (5.87). 2

Remark 5.12 If 0 < ω̂ ≤ 1, then (5.87) becomes

TV
(
Un+1

)
≤

(
ω̂

N−1∑
k=0

(1− ω̂)k + (1− ω̂)N
)
C (5.88)

= C, since ω̂
N−1∑
k=0

(1− ω̂)k + (1− ω̂)N = 1. (5.89)

Therefore, if the underlying difference scheme
(
Un−k+1

i,(k+1)

)
due to the choice of equilibrium func-

tion is TVB, then the lattice Boltzmann method induced by it is also TVB (i.e., TV (Un+1) ≤
C) if 0 < ω̂ ≤ 1.

Since upwind methods are TVB, TV
(
Un−k+1

(k+1)

)
≤ C is true for the choice of upwind equilibrium

function. Hence, the corresponding lattice Boltzmann method is also TVB if 0 < ω̂ ≤ 1.

5.4.5 Positivity

Some of the variables of hyperbolic systems are positive for all time (e.g., density and internal

energy in Euler’s system of gas dynamics, water height in shallow water system). Numerical

schemes for such hyperbolic systems are expected to ensure the positivity of these variables.

In this section, we show the positivity property of our lattice Boltzmann method by using

its macroscopic finite difference form (5.72). Un−k+1
i,(k+1) in this expression is derived by utilising

upwind D1Q3 equilibrium function as in section 5.4.2.

Theorem 5.5 Let Un+1
i given by (5.72) be the macroscopic finite difference form. If Un−k+1

i,(k+1)

is positive for k ∈ {0, 1, . . . , N} and 0 < ω̂ ≤ 1, then Un+1
i is positive.
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Proof: This is trivially seen from (5.72). 2

Therefore, if the underlying difference scheme
(
Un−k+1

i,(k+1)

)
due to the choice of equilib-

rium function is positive, then the lattice Boltzmann method induced by it is also positive

if 0 < ω̂ ≤ 1.

Thus, we discussed some properties of our LBEs. To conclude, the stability-related proper-

ties like H-inequality, total variation boundedness, and positivity are realisable if the stronger

condition 0 < ω̂ ≤ 1 is satisfied (naturally satisfied in the semi-implicit case) while small nu-

merical diffusion is realisable for ω̂ > 1 (explicit case can be used in the interval 1 < ω̂ < 2 while

ensuring positivity of numerical diffusion coefficient), depicting the trade-off between stability

and accuracy.

Remark 5.13 It is expected that the properties of LBM can be understood from its macroscopic

finite difference form in (5.72) by utilising the properties of corresponding underlying difference

scheme Un−k+1
i,(k+1) that occurs due to the choice of equilibrium functions. For instance, discrete

conservation (with periodic boundary conditions) of LBM is evident if Un−k+1
i,(k+1) satisfies discrete

conservation with periodic boundary conditions.

Thus, in this section, novel discussions concerning LBEs derived by semi-implicit and explicit

discretisations of VKE, on properties such as H-inequality, macroscopic finite difference form,

consistency, total variation boundedness and positivity have been presented.

5.5 Hyperbolic conservation laws with source terms

In this section, we extend our lattice Boltzmann method to hyperbolic conservation laws with

source terms. Consider

∂tU + ∂xd
Gd(U) = S(U), (5.90)

where S(U) is the source term.

5.5.1 Vector-kinetic equation

To approximate (5.90), consider the vector-kinetic equation

∂tfq + ∂xd

(
vdqfq

)
= −1

ϵ

(
fq − f eq

q (U)
)
+ r(fq). (5.91)
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Summing (5.91) over all q, we get

∂t

Q∑
q=1

fq + ∂xd

Q∑
q=1

(
vdqfq

)
= −1

ϵ

Q∑
q=1

(
fq − f eq

q (U)
)
+

Q∑
q=1

r(fq). (5.92)

If
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U and

∑Q
q=1 r(fq) = S(U), the above equation becomes

∂tU + ∂xd

Q∑
q=1

(
vdqfq

)
= S(U). (5.93)

In the limit ϵ→ 0, we infer from (5.91) that fq → f eq
q (U). If

∑Q
q=1 v

d
qf

eq
q = Gd(U), then (5.93)

becomes (5.90) in the limit ϵ→ 0.

Hereafter, we denote rq := r(fq) for convenience.

5.5.2 Lattice Boltzmann equation

As in section 5.3, fq in the collision term can be treated both explicitly and implicitly leading

to LBEs with ω̂ = ω and ω̂ = ω̃ = ω
1+ω

respectively. The source term rq is discretised in

Crank-Nicolson fashion. Thus, the LBE becomes

fq (x, t+∆t) = (1− ω̂)fq (x− vq∆t, t) + ω̂f eq
q (U (x− vq∆t, t))

+
∆t

2
(rq (x, t+∆t) + rq (x− vq∆t, t)) . (5.94)

The collision-streaming algorithm

Collision: F ∗
q = (1− ω̂)fq (x− vq∆t, t) + ω̂f eq

q (U (x− vq∆t, t)) +
∆t

2
rq (x− vq∆t, t)

Streaming: Fq (x, t+∆t) = F ∗
q (x− vq∆t, t)

can be used to numerically implement the LBEs. After finding Fq (x, t+∆t) = fq (x, t+∆t)−
∆t
2
rq (x, t+∆t), we find U (x, t+∆t) by solving

∑
q

Fq (x, t+∆t) = U (x, t+∆t)− ∆t

2
S(U (x, t+∆t)) (5.95)

using a non-linear iterative solver (e.g., Newton’s root finding method).
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5.5.3 Chapman-Enskog expansion

The Chapman-Enskog expansion can be obtained by first Taylor expanding the LBE (5.94) as,

(∂t + vq · ∇) fq = − ω̂

∆t

(
fq − f eq

q

)
+
ω̂

2
(∂t + vq · ∇)

(
fq − f eq

q

)
+ rq + O(∆t2). (5.96)

Consider the perturbation expansions:

fq = f eq
q + ϵf (1)

q + ϵ2f (2)
q + . . . ; rq = ϵr(1)q + ϵ2r(2)q + . . . (5.97)

Since
∑Q

q=1 fq =
∑Q

q=1 f
eq
q = U , we have

∑Q
q=1 f

(i)
q = 0,∀i ∈ N. Multiple scale expansion of

derivatives of fq gives ∂tfq =
(
ϵ∂

(1)
t + ϵ2∂

(2)
t + ...

)
fq and vq · ∇fq = ϵvq · ∇(1)fq.

Using perturbation expansion of fq, rq and multiple scale expansion of derivatives of fq in (5.96)

and separating out O(ϵ) and O(ϵ2) terms,

O(ϵ) :
(
∂
(1)
t + vq · ∇(1)

)
f eq
q = − ω̂

∆t
f (1)
q + r(1)q (5.98)

O(ϵ2) : ∂
(2)
t f eq

q +

(
1− ω̂

2

)(
∂
(1)
t + vq · ∇(1)

)
f (1)
q = − ω̂

∆t
f (2)
q + r(2)q (5.99)

Zeroth moment
(∑Q

q=1

)
of O(ϵ) terms in (5.98) and O(ϵ2) terms in (5.99) respectively give

∂
(1)
t U + ∂(1)xd

Gd(U) =

Q∑
q=1

r(1)q , (5.100)

∂
(2)
t U +

(
1− ω̂

2

)
∂(1)xd

(
Q∑

q=1

v(d)q f (1)
q

)
=

Q∑
q=1

r(2)q . (5.101)

From the first moment
(∑Q

q=1 v
d
q

)
of O(ϵ) terms in (5.98), we get

Q∑
q=1

vdqf
(1)
q = −∆t

ω̂

(
∂UG

d

(
−∂UGi∂(1)xi

U +

Q∑
q=1

r(1)q

)
−

Q∑
q=1

vdqr
(1)
q + ∂(1)xi

(
Q∑

q=1

vdqv
i
qf

eq
q

))
(5.102)

Recombining the zeroth moment equations of O(ϵ) in (5.100) and O(ϵ2) in (5.101) and reversing

the multiple scale expansions, we get
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∂tU + ∂xd
Gd(U) = S(U) + ∆t

(
1

ω̂
− 1

2

)∂xd

(
∂xi

(
Q∑

q=1

vdqv
i
qf

eq
q

)
− ∂UG

d∂UG
i∂xi

U

)
︸ ︷︷ ︸

Numerical Diffusion

+ ∂xd

(
∂UG

d

Q∑
q=1

rq −
Q∑

q=1

vdqrq

)
︸ ︷︷ ︸

Spurious Numerical Convection

 . (5.103)

5.5.4 Spurious Numerical Convection and modelling rq

The spurious numerical convection in (5.103) due to the discretisation of source term must by

avoided in order to have a reliable numerical method. Therefore, we require rq to satisfy

Q∑
q=1

vdqrq = ∂UG
d

Q∑
q=1

rq = ∂UG
dS(U). (5.104)

Thus, an rq that satisfies (5.104) along with
∑Q

q=1 rq = S(U) is required. Note that these

requirements are similar to those imposed on f eq
q , and hence expressions similar to those in

section 5.3.2 could be obtained for different models:

Classical D1Q2 : rq =
1

2
S(U)− (−1)q

1

2λ
∂UG

1S(U), for q ∈ {1, 2}

D1Q3 : rq =
1

3
S(U) + (δq1 − δq3)

1

2λ
∂UG

1S(U), for q ∈ {1, 2, 3}

Upwind DdQ(2d+ 1) : rq =


∂UGq+S(U)

λq
, for q ∈ {1, 2, . . . , d}

S(U)−
∑d

d=1

(
(∂UGd++∂UGd−)S(U)

λd

)
, for q = d+ 1

∂UG(q−(d+1))−S(U)
λq−(d+1)

, for q ∈ {d+ 2, . . . , 2d+ 1}

Thus, after finding U (x, t+∆t) by solving (5.95), we can find f eq
q (U (x, t+∆t)) (as discussed

in section 5.3.2) and rq (U (x, t+∆t)) (as discussed above), before proceeding with the next

time step.

Remark 5.14 We modelled rq such that the spurious numerical convection due to discretisation

of source term is nullified. This prevents the occurrence of spurious wave speeds and incorrect

locations of discontinuities, commonly encountered in literature. Thus, balancing of convection

and source terms which is a crucial problem in the finite volume framework, can be easily
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handled in the lattice Boltzmann framework. Our strategy thus enforces the desired property of

well-balancing and, at the same time, takes care of stiffness of the source terms to a significant

extent.

Note that rq is of O(ϵ) in (5.97). Hence, our method and underlying removal of numerical

convection works well for S(U) =
∑Q

q=1 rq = O(ϵ).

5.6 D2Q9 model of lattice Boltzmann method

The equilibrium function in (5.28) causes the underlying difference scheme
(
Un−k+1

i,(k+1)

)
to result in

pure upwinding along the coordinate directions. In this section, in addition to discrete velocities

moving along coordinate directions, we also introduce discrete velocities moving along diagonal-

to-coordinate directions. This enables the splitting of positive and negative fluxes even along

diagonal-to-coordinate directions, thereby resulting in better multi-dimensional behavior. We

consider two dimensions and a uniform lattice with equal grid spacing, with ∆x1 = ∆x2 := ∆x,

in our presentation.

5.6.1 Equilibrium function

We consider 9 discrete velocities: v1 = [λ, 0], v2 = [0, λ], v3 = [λ, λ], v4 = [−λ, λ], v5 = [0, 0],

v6 = [−λ, 0], v7 = [0,−λ], v8 = [−λ,−λ], v9 = [λ,−λ], and the corresponding equilibrium

functions:

f eq
1 =

Gα+

λ
, f eq

2 =
Gβ+

λ
, f eq

3 =
Gγ+

λ
, f eq

4 =
Gζ+

λ
,

f eq
5 = U − 1

λ

((
Gα+ +Gβ+ +Gγ+ +Gζ+

)
+
(
Gα− +Gβ− +Gγ− +Gζ−)) , (5.105)

f eq
6 =

Gα−

λ
, f eq

7 =
Gβ−

λ
, f eq

8 =
Gγ−

λ
, f eq

9 =
Gζ−

λ
.

Here Gl+−Gl− = Gl for l ∈ Z = {α, β, γ, ζ}. These equilibrium functions satisfy
∑Q=9

q=1 f
eq
q = U .

In order to ensure
∑Q=9

q=1 v
d
qf

eq
q = Gd(U), we need to satisfy the following requirements:

Q=9∑
q=1

v1qf
eq
q = Gα +Gγ −Gζ = G1(U), (5.106)

Q=9∑
q=1

v2qf
eq
q = Gβ +Gγ +Gζ = G2(U). (5.107)
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Thus, we have

Gγ =
G2 +G1

2
− Gβ +Gα

2
and Gζ =

G2 −G1

2
− Gβ −Gα

2
, ∀Gα, Gβ. (5.108)

In this setting, the underlying difference scheme corresponding to the equilibrium function

(5.105) is:

Un−k+1
i,j,(k+1) := Un−k

i,j − ∆tn−k

∆x

((
Gα+n−k

i,j −Gα+n−k

i−(k+1),j

)
−
(
Gα−n−k

i+(k+1),j −Gα−n−k

i,j

))
− ∆tn−k

∆x

((
Gβ+n−k

i,j −Gβ+n−k

i,j−(k+1)

)
−
(
Gβ−n−k

i,j+(k+1) −Gβ−n−k

i,j

))
− ∆tn−k

∆x

((
Gγ+n−k

i,j −Gγ+n−k

i−(k+1),j−(k+1)

)
−
(
Gγ−n−k

i+(k+1),j+(k+1) −Gγ−n−k

i,j

))
− ∆tn−k

∆x

((
Gζ+n−k

i,j −Gζ+n−k

i+(k+1),j−(k+1)

)
−
(
Gζ−n−k

i−(k+1),j+(k+1) −Gζ−n−k

i,j

))
. (5.109)

Further, the Chapman-Enskog expansion (5.21) corresponding to the equilibrium function

(5.105) becomes,

∂tU + ∂xd
Gd(U) = ∆t

(
1

ω̂
− 1

2

)
(
∂x1

(
λ∂U

(
Gα+ +Gα− +Gγ+ +Gγ− +Gζ+ +Gζ−)− (∂UG1

)2)
∂x1U

+∂x1

(
λ∂U

(
Gγ+ +Gγ− −Gζ+ −Gζ−)− ∂UG

1∂UG
2
)
∂x2U

+∂x2

(
λ∂U

(
Gγ+ +Gγ− −Gζ+ −Gζ−)− ∂UG

2∂UG
1
)
∂x1U

+ ∂x2

(
λ∂U

(
Gβ+ +Gβ− +Gγ+ +Gγ− +Gζ+ +Gζ−)− (∂UG2

)2)
∂x2U

)
. (5.110)

Thus, in addition to upwinding along coordinate directions, this model allows upwinding even

along diagonal-to-coordinate directions.

5.6.2 Boundary conditions

In this sub-section, we present the expressions for fq corresponding to those specific q that

are unknown at the boundaries. At boundary, the macroscopic variables U,Gα, Gβ, Gγ and Gζ

are known. From these, the split fluxes Gα±
, Gβ±

, Gγ±
and Gζ± can be found. Using these

split fluxes, equilibrium functions can be evaluated at the boundary. Thus, by taking fneq
q =

fq − f eq
q ∀q ∈ {1, 2, .., 9}, it can be inferred from the definition of conserved moment

∑9
n=1 fq =
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∑9
q=1 f

eq
q = U that,

∑9
q=1 f

neq
q = 0.

(a) Left (b) Right (c) Bottom (d) Top

Figure 5.2: Boundary conditions (Black lines indicate boundaries; red arrows indicate
unknown functions at each boundary)

5.6.2.1 Left boundary

At any point on left boundary, f2, f4, f5, f6, f7 and f8 are known from the computational do-

main, as these functions from neighbouring points (in the computational domain) hop to points

on left boundary. Let I be the set of these known functions. The unknowns at left boundary

are f1, f3 and f9 (as shown in figure 5.2a), as these functions must come from the outside of

computational domain to left boundary, and let J be the set of these unknown functions. Since

f eq
q can be evaluated ∀q ∈ {1, 2, .., 9} and fq is known ∀q ∈ I, fneq

q = fq − f eq
q can be found

∀q ∈ I (as I ⊂ {1, 2, .., 9}). Then fneq
q , ∀q ∈ J can be written as,

fneq
3 = −fneq

8 − fneq
2 + fneq

5 + fneq
7

3
(5.111)

fneq
1 = −fneq

6 − fneq
2 + fneq

5 + fneq
7

3
(5.112)

fneq
9 = −fneq

4 − fneq
2 + fneq

5 + fneq
7

3
(5.113)

satisfying
∑9

q=1 f
neq
q = 0. Now, fq = f eq

q + fneq
q ∀q ∈ J can be found to be,

f3 =
Gγ+ +Gγ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f8 −

f2 + f5 + f7
3

(5.114)

f1 =
Gα+ +Gα−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f6 −

f2 + f5 + f7
3

(5.115)

f9 =
Gζ+ +Gζ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f4 −

f2 + f5 + f7
3

(5.116)
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5.6.2.2 Right boundary

By following the same procedure of obtaining left boundary conditions, the unknown functions

at right boundary (as shown in figure 5.2b) can be found as,

f4 =
Gζ+ +Gζ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f9 −

f2 + f5 + f7
3

(5.117)

f6 =
Gα+ +Gα−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f1 −

f2 + f5 + f7
3

(5.118)

f8 =
Gγ+ +Gγ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=β

(
Gz+ +Gz−)− f3 −

f2 + f5 + f7
3

(5.119)

5.6.2.3 Bottom boundary

The unknown functions at bottom boundary (as shown in figure 5.2c) can be found as,

f3 =
Gγ+ +Gγ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f8 −

f1 + f5 + f6
3

(5.120)

f2 =
Gβ+ +Gβ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f7 −

f1 + f5 + f6
3

(5.121)

f4 =
Gζ+ +Gζ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f9 −

f1 + f5 + f6
3

(5.122)

5.6.2.4 Top boundary

The unknown functions at top boundary (as shown in figure 5.2d) can be found as,

f9 =
Gζ+ +Gζ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f4 −

f1 + f5 + f6
3

(5.123)

f7 =
Gβ+ +Gβ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f2 −

f1 + f5 + f6
3

(5.124)

f8 =
Gγ+ +Gγ−

λ
+
U

3
− 1

3λ

∑
z∈Z,z ̸=α

(
Gz+ +Gz−)− f3 −

f1 + f5 + f6
3

(5.125)

5.6.2.5 Bottom-left corner

At bottom left corner, the known equilibrium functions are f7, f8, f5 and f6. The unknown

equilibrium functions are f1, f3, f2, f4 and f9. Since f4 and f9 do not enter or leave the compu-
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tational domain, evaluation of them is not needed. Hence, it can be assumed that fneq
9 +fneq

4 +

fneq
5 = 0. Then fneq

q for other unknown equilibrium distribution functions can be written as,

fneq
1 = −fneq

6 (5.126)

fneq
3 = −fneq

8 (5.127)

fneq
2 = −fneq

7 (5.128)

satisfying
∑9

q=1 f
neq
q = 0. Now, fq = f eq

q + fneq
q can be found to be,

f1 =
Gα+ +Gα−

λ
− f6 (5.129)

f3 =
Gγ+ +Gγ−

λ
− f8 (5.130)

f2 =
Gβ+ +Gβ−

λ
− f7 (5.131)

(a) Bottom-left (b) Bottom-right (c) Top-left (d) Top-right

Figure 5.3: Corner conditions (Red arrows indicate unknown functions that are evaluated;
Blue arrows indicate unknown functions that are not evaluated)

5.6.2.6 Bottom-right corner

By following the same procedure for obtaining bottom-left corner conditions, the bottom-right

corner conditions (as shown in figure 5.3b) are found to be,

f2 =
Gβ+ +Gβ−

λ
− f7 (5.132)

f4 =
Gζ+ +Gζ−

λ
− f9 (5.133)

f6 =
Gα+ +Gα−

λ
− f1 (5.134)
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5.6.2.7 Top-left corner

The top-left corner conditions (as shown in figure 5.3c) are,

f1 =
Gα+ +Gα−

λ
− f6 (5.135)

f9 =
Gζ+ +Gζ−

λ
− f4 (5.136)

f7 =
Gβ+ +Gβ−

λ
− f2 (5.137)

5.6.2.8 Top-right corner

The top-right corner conditions (as shown in figure 5.3d) are,

f6 =
Gα+ +Gα−

λ
− f1 (5.138)

f7 =
Gβ+ +Gβ−

λ
− f2 (5.139)

f8 =
Gγ+ +Gγ−

λ
− f3 (5.140)

5.7 Numerical results

In this section, we present the numerical validation of our lattice Boltzmann methods (LBM)

discussed in the previous sections. Firstly, we depict the influence of ω on numerical diffusion

and order of accuracy. Then, we numerically validate our LBM for hyperbolic conservation

laws with source terms, and D2Q9 model of LBM. For all the cases, the numerical results

are obtained by using LBE derived by explicit discretisation of VKE. Due to the algorithmic

similarity of LBEs derived by explicit and semi-implicit discretisation of VKE, the numerical

results obtained by semi-implicit case for 0 < ω̃ < 1 are same as that obtained by explicit case

for 0 < ω < 1. Hence we only present the numerical validation of explicit case with larger

interval 0 < ω < 2.

5.7.1 Sinusoidal initial condition

The domain of the problem is [0, 1] ⊂ R. We consider inviscid Burgers’ equation with flux

function as G1(U) = 1
2
U2. The initial condition is U(x1, 0) = sin(2πx1), and boundary is

periodic. An LBM with upwind D1Q3 equilibrium functions is utilised to obtain the numerical

solution. λ1 =
∆x1

∆t
is chosen such that the sub-characteristic condition in (5.32) (which simplifies

in this case as λ1 ≥ sup
i∈Ωg

|Ui|, where Ωg is the set of grid points) is satisfied. Since we expect
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the numerical solution to be bounded between −1 and 1 for all times, we choose λ1 = 1,

and fix ∆t = ∆x1

λ1
for all time steps in order to have a consistent discretisation of the inviscid

Burgers’ equation (as discussed in remark 5.10). Further, we consider different values for

ω = ∆t
ϵ

such as, ω = 0.1, 0.6, 1.0, 1.4, 1.9 and compare their numerical diffusion by freezing all

the other parameters. We also consider discretisation of the domain with different number of

grid points N such as, N = 41, 81, 161, 321 in order to study the order of convergence. The

reference solution utilised in finding the L2 error norm is obtained by evaluating the method of

characteristics solution with a tolerance of 10−15.

Tables 5.1 and 5.2 show the L2 error norms and convergence orders for different values of ω at

time T = 0.1
2π

while the solution is still smooth. It is seen from the tables that for each fixed

value of N , L2 error norm of the numerical solution increases with decrease in ω, validating the

remark 5.7. Further, although only first order of accuracy is expected according to Chapman-

Enskog expansion (5.31), we observe more than second order accuracy for large values of ω. This

increase in order of accuracy for large values of ω can be attributed to the smaller numerical

diffusion for ω > 1 when compared to ω < 1, as mentioned in remark 5.7. We also observe that

O(L2) corresponding to a fixed N increases with increase in ω.

N ∆x1
L2, ω =

1.9
EOC, ω =
1.9

L2, ω =
1.4

EOC, ω =
1.4

L2, ω =
1.0

EOC, ω =
1.0

41 0.025 0.000597 - 0.000597 - 0.000597 -

81 0.0125
9.68
×10−5 2.626 0.000158 1.915 0.000230 1.380

161 0.00625
2.14
×10−5 2.175 3.88×10−5 2.032

6.41
×10−5 1.841

321 0.003125
3.20
×10−6 2.744

1.20
×10−5 1.690

2.33
×10−5 1.460

Table 5.1: Sinusoidal initial condition at T = 0.1
2π

for ω = 1.9, 1.4, 1.0

5.7.2 LBM for hyperbolic conservation laws with source terms

The governing equation is of the form (5.90) with p=1 (scalar conservation law). We show

that our scheme captures the discontinuities at correct locations due to the nullification of

spurious numerical convection by our choice of rq. Further, since rq = O(ϵ) is essential for such

a possibility of nullification as mentioned in remark 5.14, the numerical results with correct

locations of discontinuities are presented whenever S(U) = O(ϵ).
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N ∆x1
L2, ω =

0.6
EOC, ω =
0.6

L2, ω =
0.1

EOC, ω =
0.1

41 0.025 0.000597 - 0.000597 -
81 0.0125 0.000306 0.965 0.000405 0.562
161 0.00625 0.000100 1.611 0.000161 1.325

321 0.003125
4.38
×10−5 1.194 0.000103 0.644

Table 5.2: Sinusoidal initial condition at T = 0.1
2π

for ω = 0.6, 0.1

5.7.2.1 One dimensional discontinuity

This is the test problem used by LeVeque and Yee [202] to understand the cause for incorrectness

in speeds of discontinuities for stiff source terms. The domain is [0, 1] ⊂ R, and is split up into

50 evenly spaced grid points. For this problem, G1(U) = U and S(U) = −µU(U − 1)(U − 1
2
).

Initial conditions are:

U(x1, 0) =

{
1 for x1 ≤ 0.3

0 for x1 > 0.3
.

Boundary conditions are: U(0, t) = 1 and U(1, t) = 0 for t ≥ 0. An LBM with upwind D1Q3

form for f eq
q and rq is utilised to obtain the numerical solution. λ1 = ∆x1

∆t
is chosen such that

the sub-characteristic condition in (5.32) (which simplifies in this case as λ1 ≥ 1) is satisfied. In

particular, we use λ1 = 1, and this incidentally results in numerical solution being the same as

method of characteristics solution (even in smooth regions) since the wave-speed in the problem

is also 1. Therefore, in addition to capturing discontinuities at correct locations (due to our

choice of rq), the solution is also exact in smooth regions. Further, the time step is chosen

as ∆t = ∆x1

λ1
. We also consider ω = 1 for the simulation of this problem and this ensures

consistency with the governing equation irrespective of the choice of ∆t (as discussed in remark

5.11).

A comparison of numerical solutions reproduced from LeVeque and Yee [202] and numerical

solutions obtained from our LB scheme is shown in figure 5.4 at T = 0.3 for different values of

µ. The MacCormack’s method suffers from spurious numerical convection for µ as small as 100,

while our LB scheme is devoid of the effects of spurious numerical convection until µ = 1000.

We observe numerical convection in LB scheme for µ ≥ 10000 (not shown in figure), and this

validates the remark 5.14 that our scheme is suitable when S(U) = O(ϵ).

Hence, for this problem, we can infer that ϵ = O(kµ̃) where µ̃ represents the value of µ upto

which the method of nullification of numerical convection works. Thus, ϵ = O(k103) for some
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(a) µ = 1 (b) µ = 10 (c) µ = 100 (d) µ = 1000

(e) µ = 1 (f) µ = 10 (g) µ = 100 (h) µ = 1000

Figure 5.4: Top: Extended MacCormack’s method with limiter based on Un(Reproduced from
[202]), Bottom: Our LB scheme for hyperbolic conservation laws with source terms

constant k < 10−3.

5.7.2.2 Two dimensional discontinuity

We introduce a variant of LeVeque and Yee [202]’s problem in two dimensions, to understand

the effect of ϵ on numerical convection. The domain is [−1, 1] × [−1, 1] ⊂ R2, and is split

up into 100 × 100 grid points. Note that ∆x1 = ∆x2 = ∆x is same as the grid spacing

used in the previous one dimensional problem. For this problem, G1(U) = G2(U) = U and

S(U) = −µU(U − 1)(U − 1
2
). Initial conditions are:

U(x1, x2, 0) =

{
1 for x21 + x22 ≤ 0.3

0 for x21 + x22 > 0.3
.

Boundary conditions are: U(±1, x2, t) = 0 for x2 ∈ [−1, 1] and t ≥ 0; U(x1,±1, t) = 0 for

x1 ∈ [−1, 1] and t ≥ 0. An LBM with upwind D2Q5 form for f eq
q and rq is utilised to obtain

the numerical solution. λ = ∆x
∆t

is chosen such that the sub-characteristic condition in (5.32) is

satisfied. This simplifies in this case as

det

(
λ− 1 −1

−1 λ− 1

)
≥ 0 =⇒ λ ≥ 0 and λ ≥ 2.
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Further, the time step is chosen as ∆t = ∆x
λ
. We also consider ω = 1 for the simulation

of this problem and this ensures consistency with the governing equation irrespective of the

choice of ∆t (as discussed in remark 5.11). A comparison of numerical solutions obtained from

MacCormack’s method and our LB scheme is shown in figure 5.5 at T = 0.1 for different

values of µ. It can be seen that, for µ = 500, the MacCormack’s method suffers from spurious

(a) µ = 1 (b) µ = 10 (c) µ = 100 (d) µ = 500

(e) µ = 1 (f) µ = 10 (g) µ = 100 (h) µ = 500

Figure 5.5: Cross-sectional plot at x2 = 0. Top: Extended MacCormack’s method with
limiter based on Un, Bottom: Formulated LB scheme for hyperbolic conservation laws with

source terms

numerical convection while our LB scheme does not.

In the following, we make an estimation of µ up to which our method will work according to

remark 5.14. For this, we use subscripts D = 1 and D = 2 to compare certain variables from

sections 5.7.2.1 and 5.7.2.2 respectively. Since λD=1 = 1, λD=2 = 2, and ∆x is the same for

both one and two dimensional problems, we have ∆tD=2 =
∆tD=1

2
. Further, since ωD=1 =

∆tD=1

ϵD=1

and ωD=2 =
∆tD=2

ϵD=2
are both equal to 1, we have ϵD=2 =

ϵD=1

2
. Thus, since ϵD=1 in section 5.7.2.1

is O(k103), ϵD=2 for two dimensional problem is O
(
k 103

2

)
. Hence, for this problem, our LB

scheme is expected to be devoid of spurious numerical convection for µ up to O(500), and this

is validated by the numerical results shown in figure 5.5.

5.7.2.3 Three dimensional discontinuity

Here, we introduce a variant of LeVeque and Yee [202]’s problem in three dimensions. The

domain is [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3, and is split up into 100 × 100 × 100 grid points.

Note that ∆x1 = ∆x2 = ∆x3 = ∆x is same as the grid spacing used in the one dimensional

146



case. For this problem, G1(U) = G2(U) = G3(U) = U and S(U) = −µU(U − 1)(U − 1
2
). Initial

conditions are:

U(x1, x2, x3, 0) =

{
1 for x21 + x22 + x23 ≤ 0.3

0 for x21 + x22 + x23 > 0.3
.

Boundary conditions are: U(±1, x2, x3, t) = 0 for (x2, x3) ∈ [−1, 1] × [−1, 1] and t ≥ 0;

U(x1,±1, x3, t) = 0 for (x1, x3) ∈ [−1, 1]× [−1, 1] and t ≥ 0; U(x1, x2,±1, t) = 0 for (x1, x2) ∈
[−1, 1]× [−1, 1] and t ≥ 0. An LBM with upwind D3Q7 form for f eq

q and rq is utilised to obtain

the numerical solution. λ = ∆x
∆t

is chosen such that the sub-characteristic condition in (5.32) is

satisfied. This simplifies in this case as

det

λ− 1 −1 −1

−1 λ− 1 −1

−1 −1 λ− 1

 ≥ 0 =⇒ λ ≥ 0 and λ ≥ 3.

Further, the time step is chosen as ∆t = ∆x
λ
. We also consider ω = 1 for the simulation

of this problem and this ensures consistency with the governing equation irrespective of the

choice of ∆t (as discussed in remark 5.11). A comparison of numerical solutions obtained from

MacCormack’s method and our LB scheme is shown in figure 5.6 at T = 0.1 for different

values of µ. It can be seen that, for µ = 500, the MacCormack’s method suffers from spurious

numerical convection while our LB scheme does not.

In the following, we use subscripts D = 1 and D = 3 to compare certain variables from sections

5.7.2.1 and 5.7.2.3 respectively. Since λD=1 = 1, λD=3 = 3, and ∆x is the same for both one

and three dimensional problems, we have ∆tD=3 = ∆tD=1

3
. Further, since ωD=1 = ∆tD=1

ϵD=1
and

ωD=3 = ∆tD=3

ϵD=3
are both equal to 1, we have ϵD=3 = ϵD=1

3
. Thus, since ϵD=1 in section 5.7.2.1

is O(k103), ϵD=3 for three dimensional problem is O
(
k 103

3

)
. Hence, for this problem, our LB

scheme is expected to be devoid of spurious numerical convection for µ up to O
(

103

3

)
, and we

observe nullification of numerical convection for µ up to 500 in figure 5.6.

5.7.2.4 Non-linear problem with discontinuity

This is a variant of the problem from Embid, Goodman and Majda [239]. The domain is

[0, 1] ⊂ R, and is split up into 100 evenly spaced grid points. The flux function G1(U) = 1
2
U2

is non-linear and S(U) = µ(6x − 3)U . Boundary conditions are U(x1 = 0, t) = 1 and U(x1 =

1, t) = −0.1, ∀t. For numerical simulation of this steady problem, 500 iterations are utilised

with the initialisation

U(x1, 0) =

{
1 for x1 ≤ 0.1

−1 for x1 > 0.1
.

147



(a) µ = 1 (b) µ = 10 (c) µ = 100 (d) µ = 500

(e) µ = 1 (f) µ = 10 (g) µ = 100 (h) µ = 500

Figure 5.6: Cross-sectional plot at x2, x3 = 0. Top: Extended MacCormack’s method with
limiter based on Un, Bottom: Formulated LB scheme for hyperbolic conservation laws with

source terms

For this problem, λ is chosen based on sub-characteristic condition and ω is fixed as 1. The

numerical solutions obtained using LB scheme plotted against the exact solution, for different

values of µ, are shown in fig. 5.7. It is seen that the numerical method correctly locates the

discontinuities for different values of µ.

5.7.3 D2Q9 model of LBM

In this section, we show the diagonal upwinding nature of our D2Q9 model of LBM. For this, we

consider a standard two-dimensional linear problem from [285]. The domain is [0, 1]×[0, 1] ⊂ R2,

and is split up into 50 × 50 grid points. Here ∆x1 = ∆x2 = ∆x. The flux functions are

G1(U) = aU , G2(U) = bU where a = cos θ, b = sin θ and θ ∈
(
0, π

2

)
. Boundary conditions are:

U(0, x2, t) = 1 for 0 < x2 < 1,

U(x1, 0, t) = 0 for 0 < x1 < 1,
, ∀t.

Exact solution is:
U(x1, x2, t) = 1 for bx1 − ax2 < 0,

U(x1, x2, t) = 0 for bx1 − ax2 > 0,
, ∀t.

It can be noted that the problem is steady. An LBM with D2Q9 equilibrium functions (5.105)

is utilised to obtain the numerical solution. For this problem, we run 1000 iterations of our
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(a) µ = 1 (b) µ = 2 (c) µ = 3 (d) µ = 4

(e) µ = 5 (f) µ = 6 (g) µ = 7 (h) µ = 8

Figure 5.7: LB scheme for non-linear problem with different values of µ

(a) θ = 0 (b) θ = π
2 (c) θ = π

4

Figure 5.8: Discontinuities along coordinate and diagonal-to-coordinate directions captured
exactly due to upwinding

LBM before presenting the steady state solution. λ is chosen such that the sub-characteristic

condition obtained by imposing positivity of numerical diffusion coefficient in (5.110) is satis-

fied. Further, we consider ω = 1 for the simulation of this problem and this ensures consistency

with the governing equation (as discussed in remark 5.11).

The numerical solutions for θ = 0 and θ = π
2
obtained by choosing the fluxes Gγ = Gζ = 0

(thereby replicating a standard D2Q5 upwind model), are shown in figures 5.8a and 5.8b respec-

tively. The numerical solution for θ = π
4
obtained by choosing Gα = Gβ = 0, is shown in figure

5.8c. It can be seen from these results that, for a specific partition of total flux between coor-

dinate and diagonal-to-coordinate directions, the D2Q9 model captures discontinuities aligned

with x1, x2 and diagonal directions exactly.
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5.8 Summary and conclusions

The following are the major highlights of the chapter.

• An LBE is derived by semi-implicit discretisation of VKE, and its relaxation factor is

compared with that of the usual LBE obtained by explicit discretisation of VKE.

• Macroscopic finite difference form of the LBEs is derived, and it is utilised in establish-

ing consistency of LBEs with the hyperbolic system, and in showing the total variation

boundedness and the positivity of LBM.

• The usual condition on ω̂ enforced by positivity of numerical diffusion coefficient in

Chapman-Enskog expansion is 0 < ω̂ < 2. On the other hand, the properties such as

H-inequality, total variation boundedness and positivity enforce the stronger constraint

0 < ω̂ ≤ 1. By construction, the LBE that we derived by semi-implicit discretisation of

VKE naturally satisfies this stronger condition as ω̃ is in the interval (0, 1) (since ω̃ = ω
1+ω

with ω = ∆t
ϵ
> 0) as explained in remark 5.2. Hence, with semi-implicit discretisation,

large values of ω can be used, and ω̃ will still satisfy the stability properties.

• Smaller numerical diffusion and better order of accuracy are realisable for 1 < ω̂ < 2 in

the case of LBE derived by explicit discretisation of VKE.

• The LBM framework is extended to hyperbolic conservation laws with source terms and

the spurious numerical convection due to imbalance between convection and source terms

is removed by suitable modelling of rq. The resulting method not only leads to well-

balancing but also is effective for source terms of significant stiffness. Thus, our lattice

Boltzmann framework can easily overcome the problem of well-balancing which is often

encountered while approximating hyperbolic equations with source terms in finite volume

framework, as mentioned in remark 5.14.

• A D2Q9 model of our LBM framework allows upwinding along diagonal directions, in

addition to the usual upwinding along co-ordinate directions, resulting in better multidi-

mensional behaviour.
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Chapter 6

Conclusions

The objective of this thesis is to develop structure preserving numerical methods that yield rel-

evant numerical solutions, for hyperbolic PDE systems and multiscale kinetic equations. Four

novel numerical methods that satisfy some of the structures like entropy stability, asymptotic

preservation and well-balancing have been presented. Each chapter has addressed specific struc-

ture preserving strategies that are of concern to a given system of governing equations.

In chapter 2, an entropy stable scheme for vector-kinetic model of hyperbolic systems is pre-

sented. It is shown that this also recovers entropy stability of the hyperbolic system in addition

to ensuring entropy stability of the vector-kinetic model. As the vector-BGK model present

in literature need not allow for the existence of entropy flux potentials that are crucial in the

construction of entropy conserving/stable fluxes, a modification to vector-BGK model is made

by enforcing positive-definiteness of Jacobians. Another important aspect behind the devel-

opment of this scheme is the proof that the entropy variables for vector-kinetic model and

hyperbolic system are same. This property facilitates the conservation/stability of both vector-

kinetic and macroscopic (hyperbolic PDE system) entropies. The numerical results show that

the entropies of both vector-kinetic model and hyperbolic system remain constant (or decay),

depicting the entropy conservation (or stability) property. A potential future scope would be

to ensure entropy consistency of all vector-kinetic entropies. Apart from satisfying the discrete

entropy inequality, this property would ensure that the discrete form of entropy equation as a

whole is satisfied. The difficulty in achieving entropy consistency lies in an appropriate choice

of numerical flux.

In chapter 3, a high order asymptotic preserving (AP) scheme that is formulated through micro-

macro decomposition, for diffusive-scaled linear kinetic equations is presented. The usage of a

specific class of time integrator allows the applicability of the framework to problems with even

non-well-prepared initial conditions. The high order AP framework based on micro-macro de-
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composition is extended to advection-diffusion asymptotics and the formal proof of asymptotic

preserving property required more involved definitions when compared to that of the diffusion

case. The framework is also extended to inflow boundary problems by considering another type

of micro-macro decomposition. The numerical results show that required high order accuracy is

attained for all values of the parameter without reducing mesh and time step sizes. A potential

future scope would be to develop a high order AP scheme for more involved kinetic equations

applicable for plasma flows like Vlasov equations coupled with Poisson or Maxwell equations.

In chapter 4, an asymptotic preserving scheme that satisfies entropy stability for the barotropic

Euler system is presented. An appropriate implicit-explicit (IMEX) time discretisation is

utilised for the time semi-discrete scheme to achieve the asymptotic preserving property. Three

different spatial discretisation strategies are considered and their entropy stability properties

have been studied. The numerical results show that the entropy, potential energy and kinetic

energy remain nearly constant or decay in different regimes of the parameter Mach number.

The scheme also decomposes into a numerical scheme for incompressible barotropic Euler equa-

tions in the low Mach number limit. The potential future scope consists of extension to other

hyperbolic systems like Euler’s system. In this, the choice of appropriate spatial discretisa-

tion strategies for the energy fluxes would be crucial for ensuring entropy stability in different

regimes of the parameter Mach number.

In chapter 5, two different lattice Boltzmann discretisations of vector-kinetic models of hy-

perbolic systems are compared based on some important properties likes H-inequality, total

variation boundedness, and positivity. This comparison shows that the explicit discretisation

can give better accuracy with relaxation factor between 1 and 2, while semi-implicit discreti-

sation is stable irrespective of the value of relaxation factor. Further, the macroscopic finite

difference form of the lattice Boltzmann discretisation shows that the lattice Boltzmann method

is nothing but a multi-step finite difference scheme. If an upwind equilibrium function is used,

then the lattice Boltzmann method is simply a multi-step upwind method. Further, a novel

well-balancing strategy that avoids spurious numerical convection due to imbalance between

convection and source terms is also presented. The numerical results validate this strategy by

capturing discontinuities at correct locations. As there is a bound on the value of stiff parameter

for which this strategy is applicable, a potential future research direction would be to develop

a strategy to increase (or remove) the bound so that the spurious numerical convection could

be avoided for many (or all) stiff equations. Another potential future research direction would

be to extend this well-balancing strategy to systems of PDEs, by also imposing the inherent

bounds on some special variables (like density and energy that are positive in reactive Euler’s

system) present in these systems.
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[188] Kuzmin, D., and Jämäläinen, J. Finite Element Methods for Computational Fluid

Dynamics: A Practical Guide. SIAM, 2014. 7

[189] Lafitte, P., and Samaey, G. Asymptotic-preserving projective integration schemes

for kinetic equations in the diffusion limit. SIAM J. Sci. Comp. 34 (2012), 579–602. 49

[190] Lallemand, P., and Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion,

dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (Jun 2000),

6546–6562. 114

[191] Laney, C. B. Computational Gasdynamics. Cambridge University Press, 1998. 4

170



BIBLIOGRAPHY

[192] Larsen, E., and Keller, J. Asymptotic solution of neutron transport problems for

small mean free paths. J. Math. Phys. 15 (1974), 75–81. 49

[193] Lax, P., and Wendroff, B. Systems of conservation laws. Communications on Pure

and Applied Mathematics 13, 2 (1960), 217–237. 2, 3

[194] Lax, P. D. Selected Papers Volume I. Springer, 2005. 3

[195] Lax, P. D. Hyperbolic Partial Differential Equations. Courant Lecture Notes Vol. 14.

American Mathematical Society, Courant Institute of Mathematical Sciences, 2006. 2

[196] LeFloch, P. G., Mercier, J. M., and Rohde, C. Fully Discrete, Entropy Conser-

vative Schemes of Arbitrary Order. SIAM Journal on Numerical Analysis 40, 5 (2002),

1968–1992. 17, 26

[197] LeFloch, P. G., and Ranocha, H. Kinetic Functions for Nonclassical Shocks, En-

tropy Stability, and Discrete Summation by Parts. Journal of Scientific Computing 87

(2020). 13

[198] Lemou, M. Relaxed micro-macro schemes for kinetic equations. Comptes Rendus Math-

ematique 348 (2010), 455–460. 49, 52, 53
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Noelle, S. A Novel Full-Euler Low Mach Number IMEX Splitting. Communications

in Computational Physics 27, 1 (2019), 292–320. 86

[333] Zha, G.-C., and Bilgen, E. Numerical solutions of Euler equations by using a new

flux vector splitting scheme. International Journal for Numerical Methods in Fluids 17,

2 (1993), 115–144. 3

[334] Zinkiewicz, O., Taylor, R., and Nithiarasu, P. The Finite Element Method for

Fluid Flows, 7th ed. Elsevier, 2014. 7

[335] Zu, Y. Q., and He, S. Phase-field-based lattice Boltzmann model for incompressible

binary fluid systems with density and viscosity contrasts. Phys. Rev. E 87 (2013), 043301.

114

183


	Acknowledgements
	Abstract
	List of publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Hyperbolic systems of PDEs
	1.1.1 Numerical discretisation of hyperbolic PDE systems
	1.1.2 Higher order discretization strategies
	1.1.3 Structure preserving schemes

	1.2 Multiscale kinetic equations
	1.2.1 Numerical discretisation of multiscale kinetic equations

	1.3 Outline of the thesis

	2 Entropy conserving/stable scheme for a vector-kinetic model of hyperbolic systems
	2.1 Introduction
	2.2 Macroscopic model
	2.2.1 Entropy framework
	2.2.2 Entropy conserving scheme
	2.2.3 Entropy stable scheme

	2.3 Vector-BGK model
	2.3.1 Entropy framework

	2.4 Vector-kinetic model
	2.4.1 Entropy framework

	2.5 Entropy conserving scheme for vector-kinetic model
	2.6 Entropy stable scheme for vector-kinetic model
	2.6.1 High resolution scheme

	2.7 Time discretisation
	2.8 Numerical results
	2.8.1 Scalar equations
	2.8.1.1 Linear advection
	2.8.1.2 Linear rotation
	2.8.1.3 Non-linear inviscid Burgers' test

	2.8.2 Shallow water equations
	2.8.2.1 1D expansion problem
	2.8.2.2 1D dam break problem
	2.8.2.3 2D periodic flow
	2.8.2.4 2D Travelling vortex
	2.8.2.5 2D cylindrical dambreak


	2.9 Summary and Conclusions
	2.10 Appendix: Choice of constants am, b(d)m

	3 High order asymptotic preserving scheme for diffusive-scaled kinetic equations
	3.1 Introduction
	3.2 Kinetic equation, diffusion limit and micro-macro decomposition
	3.2.1 Linear kinetic equation with diffusive scaling
	3.2.2 Diffusion limit
	3.2.3 Micro-macro decomposition

	3.3 Time integrators
	3.3.1 First order accurate time integrator
	3.3.2 High order accurate time integrators

	3.4 Asymptotic preserving property
	3.5 Space and velocity discretization
	3.5.1 Discrete velocity method
	3.5.2 Space discretization using staggered grid
	3.5.3 Space discretization using non-staggered grid

	3.6 Extensions to advection-diffusion collision operator and inflow boundary problems
	3.6.1 Advection-diffusion asymptotics
	3.6.1.1 High order time integrator
	3.6.1.2 Asymptotic preserving property

	3.6.2 Inflow Boundaries
	3.6.2.1 Numerical scheme


	3.7 Numerical results
	3.7.1 Diffusion asymptotics
	3.7.1.1 Time order of accuracy
	3.7.1.2 Space order of accuracy
	3.7.1.3 Qualitative results

	3.7.2 Advection-diffusion asymptotics
	3.7.3 Inflow boundary condition
	3.7.3.1 Time order of accuracy
	3.7.3.2 Qualitative results for equilibrium inflow
	3.7.3.3 Qualitative results for non-equilibrium inflow


	3.8 Appendix: Matrix notation
	3.9 Appendix: Butcher tableau

	4 An asymptotic preserving scheme satisfying entropy stability for the barotropic Euler system
	4.1 Introduction
	4.2 Mathematical model
	4.2.1 The barotropic Euler system
	4.2.2 Entropy stability property
	4.2.3 Asymptotic limit

	4.3 Numerical method
	4.3.1 Semi-discrete IMEX time discretisation
	4.3.2 Asymptotic preserving property of the time semi-discrete scheme
	4.3.3 Space discretisation
	4.3.3.1 Type 1
	4.3.3.2 Type 2
	4.3.3.3 Type 3

	4.3.4 Asymptotic preserving property of the fully discrete scheme

	4.4 Numerical results and discussion
	4.4.1 Standard periodic problem
	4.4.1.1 Entropy, kinetic energy (KE) and potential energy (PE)
	4.4.1.2 Order of accuracy

	4.4.2 Colliding acoustic waves problem
	4.4.3 Riemann problem
	4.4.4 Gresho vortex problem

	4.5 Summary and Conclusions
	4.A Appendix: Butcher tableau

	5 On Lattice Boltzmann Methods based on vector-kinetic models for hyperbolic partial differential equations
	5.1 Introduction
	5.2 Mathematical model
	5.2.1 Hyperbolic conservation law
	5.2.2 Vector-kinetic equation

	5.3 Lattice Boltzmann equation
	5.3.1 Chapman-Enskog expansion
	5.3.2 Equilibrium function
	5.3.2.1 Classical D1Q2
	5.3.2.2 D1Q3
	5.3.2.3 Upwind DdQ(2d+1)


	5.4 Properties of the lattice Boltzmann equation
	5.4.1 H-inequality
	5.4.2 Macroscopic finite difference form
	5.4.3 Consistency
	5.4.4 Total Variation Boundedness
	5.4.5 Positivity

	5.5 Hyperbolic conservation laws with source terms
	5.5.1 Vector-kinetic equation
	5.5.2 Lattice Boltzmann equation
	5.5.3 Chapman-Enskog expansion
	5.5.4 Spurious Numerical Convection and modelling rq

	5.6 D2Q9 model of lattice Boltzmann method
	5.6.1 Equilibrium function
	5.6.2 Boundary conditions
	5.6.2.1 Left boundary
	5.6.2.2 Right boundary
	5.6.2.3 Bottom boundary
	5.6.2.4 Top boundary
	5.6.2.5 Bottom-left corner
	5.6.2.6 Bottom-right corner
	5.6.2.7 Top-left corner
	5.6.2.8 Top-right corner


	5.7 Numerical results
	5.7.1 Sinusoidal initial condition
	5.7.2 LBM for hyperbolic conservation laws with source terms
	5.7.2.1 One dimensional discontinuity
	5.7.2.2 Two dimensional discontinuity
	5.7.2.3 Three dimensional discontinuity
	5.7.2.4 Non-linear problem with discontinuity

	5.7.3 D2Q9 model of LBM

	5.8 Summary and conclusions

	6 Conclusions
	Bibliography

